The Missing Book

Nicholas Tierney & Allison Horst

2022-04-07



Table of contents

Preface

Welcome . . . . . . L
What you will learn . . . . . . . . ..
Prerequisites . . . . . ..

Narrative story / example . . . . . . ... Lo
Why care about missing data? . . . . ... .. Lo
How to read this book . . . . . . . . . . ..

Introduction to missing data

Introduction to missing data

1.1 What are missing values? . . . . . . . .. ...
1.2 How does R deal with missing values? . . . ... ... ... ...........
1.2.1 Missing values in basic R operations . . . . . .. .. .. ... .. ....
1.3 Do my data contain missing values? . . . .. ... .. ... ... L.
1.3.1 are_na(): which valuesare NA? . . . . . . . . ... ... ... ......
1.3.2 any_na(): are there any NAS? . . . . . . . . . . ... ... ...
1.3.3 Your Turn: Exercises . . . . . . . . . . . .o

Missing data gotchya’s

2.1 NaN vs NA . . . .
2.2 NULL vs NA . . e
2.3 Infvs NA . o e

“NA” vs NA
3.1 Conditional statements and NA . . . . . . . . .. ... ... ... ...,
3.2 The multiple flavours of NA values . . . . . . .. ... .. .. ... . ......

Explore Missing Values

Explore missing values

4.1 Explore “big picture” missingness . . . . . . . . .. ...
4.1.1 vis_miss to visualize locations of missing values . . . . . ... ... ..
4.1.2  Overall counts and proportions of missing values . . . . . ... ... ..

o> Moo R e) B =)]

14
14
15
16

17
17
18



4.1.3 Co-occurrence of missing values . . . . . . . .. ... L.
4.1.4 Visualize missingness by factor level . . . . . ... ... .. 0.

5 Missingness by variables (columns) and cases (rows)
5.0.1 Missingness within variables . . . . . . .. . ... ... ... L.
5.0.2 Missingness by case (rows) . . . . . . . . ... ...

6 Missingness in spans and streaks
6.0.1 Missingness in Spans . . . . . . . ... oL el e e e e
6.0.2 Example: Pedestriandata . . . . .. .. ... 0oL
6.0.3 Streaks of missingness . . . . .. ... Lo Lo

Il Cleaning missing data

7 Cleaning missing data
7.1 Find and replace missing values . . . . . . . . ... oL
7.1.1 Search for missing values . . . . . .. ... ... L.
7.1.2 Replacing missing values with NA . . . . . .. .. ... ... ...
7.1.3 Useful variants of replace_with_na . . .. .. ... ... ... .....
7.1.4 Alternatives to replace_with na. . . . . . . . ... ... ... .....

8 Missing, missing data: explicit and implicit missings
8.0.1 Explore implicit missings . . . . . .. . ... . o oL
8.0.2 Making implicit missings explicit . . . . . . .. ..o
8.0.3 Handling explicitly missing values . . . .. ... ... ... ... ....

IV Representing Missing Data

9 Representing Missing Data
9.1 Motivation . . . . . . . L
9.2 The shadow matrix . . . . . . . . . . . ... e
9.3 Creating nabulardata . . . . . ... .. . L oo
9.4 Data summaries with nabulardata . . . . . . . ... ... . 0L

10 Exploring conditional missings with ggplot
10.1 Visualizing missings using densities . . . . . . . . . . ... ... L.
10.2 Visualizing missings using boxplots . . . . . . . . .. ... o oo
10.3 Visualizing missings using facets . . . . . . . ... .. ... L.
10.4 Visualizing missings using colour . . . . . . . .. ... ... 0o
10.5 Adding layers of missingness . . . . . . . . . ...

41
43
46
52

55

56
56
o7
60
61
64

68
68
70
70

73

74
74
7
79
81



11 Visualizing missingness across two variables
11.0.1 The problem of visualizing missing data in two dimensions . . . . . ..
11.0.2 Introduction to geom_miss_point() . . . .. ... ... ... .. ... ..
11.0.3 Exploring missingness using facets . . . . . . .. .. ... 0oL

V  Mechanisms of Missingness

12 Mechanisms of missingness
12.1 Missing completely at random (MCAR) . . . . ... ... ... .. ... ....

12.2 Missing at random (MAR) . . . . . . . ... ... .. L o
12.2.1 MAR: Implications . . . . . . . . . ...
12.3 Missing not at random (MNAR) . . .. ... .. ... ... ... ........
12.3.1 MNAR explanation . . . . . . . ... ... ... ...
12.4 Some more examples of MCAR, MAR, and MNAR . . . .. ... ... .....
12.4.1 Example: MCAR . . . . . . . . . . .
12.4.2 Example: MAR . . . . . . . . .
12.4.3 Example: MNAR . . . . . . . .. .

VI Single Imputation of Missing Data

13 Single Imputation of missing data

13.1 Performing and tracking imputation . . . .. .. ... ... ... 0.
13.2 Using imputations to understand data structure. . . . . . . .. . ... ... ..

13.2.1 dimpute_below() . . . . . . . . . ...
13.3 Tracking missing values . . . . . . . . . . . L
13.4 Visualise imputed values against data values using histograms . . . . . . . . ..
13.5 Visualise imputed values against data values using facets . . . . . . . . ... ..
13.6 Visualize imputed values using facets . . . . . . . ... ... L.
13.7 Visualize imputed values against data values using scatterplots . . . . .. . ..

14 Assessing imputation
14.1 What makes a good imputation . . . . . . .. .. o L oL
14.2 When to impute . . . . . . . . . .
14.3 Understanding the good by understanding the bad . . . . . . . ... ... ...
14.3.1 Demonstrating mean imputation . . . . . . .. ... ... ... ...
14.3.2 Explore bad imputations: The mean . . . . . .. .. .. ... ... ...
14.3.3 Tracking missing values . . . . . . . .. .. .. L oL
14.3.4 Using a boxplot to explore how the mean changes . .. ... ... ...
14.4 Using a scatterplot to Explore how spread changes with imputation . . . . . .
14.4.1 How to explore imputations for many variables . . . . ... ... .. ..

91
92
93
97

99

100
101
101
104
106
106
106
109
109
110
111

113

114
114
115
116
135
136
137
138
139



14.4.2 Exploring imputations for many variables . . . . . . ... ... ... ..

15 Imputing with different models

15.1 How imputation using a linear model works . . . . . .. .. ... .. ... ...

15.2 Using impute_1m . . . . .. . ..
15.2.1 Tracking missing values .

15.3 Evaluating imputations: Evaluating and comparing imputations . . . . . . ..
15.4 Evaluating imputations: exploring many imputations . . . . . . . . .. ... ..
15.5 Explore imputations in multiple variables and models . . . . . . ... ... ..

15.5.1 Explore imputations in multiple variables and models . . . . . . .. ..
15.6 Explore imputations in multiple variables and models . . . . . . ... ... ..

16 Assessing inference from imputation

16.1 Exploring parameters of one model . . . . . . . ... ... L.

16.2 Combining the datasets together
16.3 Exploring the models . . . . . . .

16.4 Exploring coefficients of multiple models . . . . . . ... ... .. ... ... ..
16.5 Exploring residuals of multiple models . . . . . . .. ... ... ... ......
16.6 Exploring predictions of multiple models . . . . . . ... .. ... ...,

VIl Conclusion

17 End
17.0.1 This is only the beginning!

Appendices
References

A glossary

151
152
154
154
156
158
159
161
162

164
165
165
167
169
171
172

174

175

175

176

177

178



Preface

Welcome

Welcome to The Missing (Data) Book! Through this book you will learn concepts and tools
to explore, consider, and deal with missing values in your data.

What you will learn

After reading and completing the exercises in this book, you will be able to answer the following
questions and apply them to your own data:

e What are missing values, and why do we care about them?
e How can I find and explore missing values in data?

e How can I wrangle and tidy missing data?

e How can I investigate why values are missing?

e How can I impute missing values?

Prerequisites

For this course we assume you have:

¢ Basic to intermediate experience with R

o Experience creating plots using ggplot2

o Experience using dplyr to manipulate data
o Basic experience fitting linear models in R

Narrative story / example

Why care about missing data?

The best thing to do with missing data is to not have any

—Gertrude Mary Cox



As true as what Statistician Gertrude Mary Cox said, it is not the world we live in. Working
with data means working with missing data. To be a great analyst you need to know how to
deal with missing values.

Well, why should we care about missing data?” Understanding how missing data work is
important as they can have unexpected effects on your analysis. For example, fitting a linear
model on data with missing values deletes chunks of data. This means your decisions aren’t
based on the right evidence. Simiarly, we need to take care when we replace missing values, a
process called imputation. Imputation has to be done very carefully. If we insert the wrong
values, we can end up with poor estimates and decisions. Imagine substituting salt for sugar
in a cake - the result is disastrous!

How to read this book

We have broken this book into 7 parts. Most of these parts each have accompanying exercises
for you to complete online. These seven sections are:

Introduction to Missing Data
Missing Data Gotchya’s

Explore Missing Values

Cleaning Missing Data
Representing Missing Data
Mechanisms of Missingness

Single Imputation of Missing Data

OOt W

The book has been designed to be read in this order, as we build upon material in each section.
And while seven sections might sound like a lot, these sections are all quite short!
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1 Introduction to missing data

1.1 What are missing values?

First, we need to define missing values:
Missing values are values that should have been recorded but were not.
Consider these two examples where you are out counting birds in an area:

1. You see a bird, but forget to record the observation and leave the value blank.
2. You do not record any bird sitings, and record a 0 value.

The first of these is an example of a missing value - the value was intended to be recorded
but was not. The second is a record of the absence of birds.

In other words: if you did not see any birds, you should have entered a value indicating no
birds were seen. Because there is no record where there should have been one, it is a missing
value.

How do we note when a value is missing? There are many ways it might be recorded, depending
on a variety of factors, such a the standards in a given field, or the way that the data was
collected. Here are a few examples:

 blank records (e.g. empty cells in a spreadsheet)

o Consistently recorded indicators for missing values, such as “NA”, “N/A” or “-9999”
throughout the data

e A combination of different values meant to indicate a missing value (for example, if a
team of researchers are recording urchin diameters, Researcher A might enter “-9999”
for a missing measurement, while Researcher B enters “N/A”)

You can imagine how chaotic this might get when we have many different types of missing
value all recorded together. Imagine a dataset like this:

bird count researcher
kookaburra NA A
kookaburra 0 B
Crow NA A



bird count researcher

Crow 1 B
pigeon -999 A
pigeon -9999 B

To simplify things, we will start by exploring cleaned up missing values - those stored as NA,
which is R’s standard way of representing missing values. Transforming the chaos above, this
is how it would be represented if the missing values appropriately.

bird count researcher
kookaburra NA A
kookaburra 0 B
Crow NA A
Crow 1 B
pigeon NA A
pigeon NA B

To help explore and understand missing values, we’ll be using the naniar package, which
provides many helpers to make it easier to explore, understand, and visualise missing values.

1.2 How does R deal with missing values?

Before we start exploring missingness, we need to understand how R interprets and processes
missing values. R stores missing values as NA, which stands for Not Available. R deals with
NAs in unique, and sometimes unexpected, ways.

1.2.1 Missing values in basic R operations

What happens when we mix missing values (NA) with our calculations? We need to know how
R deals with missing values in operations so we can recognize these cases and deal with them
appropriately.

The general rule for NAs in R calculations is:
Calculations with NA return NA.
Several outcomes for common operations that include NA are:

o NA + [anything] = NA

10



e NA - [anything] = NA
o NA * [anything] = NA
e NA / [anything] = NA
e NA == [anything*] = NA

For example, suppose we have a heights dataset containing the heights of four friends (Sophie,
Dan, Fred, and Liz):

heights <- tibble::tibble(

name = c("Sophie", "Dan", "Fred", "Liz"),
height = c(163, 175, NA, NA)

)

heights

# A tibble: 4 x 2
name  height
<chr> <dbl>

1 Sophie 163
2 Dan 175
3 Fred NA
4 Liz NA

The sum of the height variable returns NA:
sum(heights$height)
[1] NA

This is because we cannot know the sum of a number and a missing value. Similarly, if we try
to find the mean height, NA is returned:

mean (heights$height)
[1] NA

When an operation on data containing an NA returns an NA, it tells us the missing values are
not being ignored in the calculation, reflecting the default argument na.rm = FALSE (read:
“Remove NAs? No!”) in many functions.

11



Always check the default NA action (e.g. na.rm = FALSE) for functions. As we will
see later, the default in some functions is to remove NA - sometimes without
warning.

Can we override the default NA action? Sure! For example, we can calculate the mean of the
non-missing heights in our example dataset by updating the action to na.rm = TRUE (read:
“Remove NAs? Yes!”). The mean value is then calculated based on the two existing height
values, and any NA are ignored.

mean (heights$height, na.rm = TRUE)

[1] 169
Now that we know a bit about how R stores and handles missing values, we can start exploring

them.

1.3 Do my data contain missing values?

library(naniar)

Missing values don’t jump out and scream “I’'m here!”. They’re usually hidden, like a needle
in a haystack - especially in large datasets. We need tools (or rather, functions) to quickly
identify and count missing values.

Let’s create an example vector x, which contains missing values encoded as NA:

x <= c(1, NA, 3, NA, NA, 5, 8)
X

[1] 1 NA 3 NANA 5 8
In this small vector (n = 7), we can quickly see that the 27 4™ and 5% values in the vector
are NA. With larger data, however, we would want tools to identify these for us, instead of

manually looking for them. Two functions for identifying NAs are are_na() and any_na().
These are from the naniar R package.

1.3.1 are_na(): which values are NA?

The are_na() function checks each value in a vector or data frame (i.e., for each value it asks
“is this value NA”?) then returns TRUE (if NA) or FALSE (if anything besides NA).

12



are_na(x)

(1] FALSE TRUE FALSE TRUE TRUE FALSE FALSE

As expected, the three NA elements in x return TRUE.

1.3.2 any_na(): are there any NAs?
The are_na() function tells us which values are NA. If we instead want to know if any elements

in our data are NA, we can instead use any_na(). The any_na function returns TRUE if there
are any missing values (stored as NAs), and FALSE if there are none.

any_na(x)

[1] TRUE

Because x contains at least one NA, we see that any_na(x) returns TRUE, and will return
FALSE if there are no NA values:

any_na(c(1, 2, 3, 4))

[1] FALSE

The any_na and are_na functions can give us a “heads up” about whether or not our data
contains missing values. To deal with them responsibly, however, we need to dig further into
patterns of missingess. The next step is exploring missingness visually.

1.3.3 Your Turn: Exercises

You can complete the exercises in an interactive environment using the learnr exercises for this
section at (link).

13



2 Missing data gotchya’s

library(naniar)
Missing data are a special part of R, they are baked right into the software, and aren’t only
made available by certain R packages. However, there are some quirks of missing data that

mean they can catch you off guard. Let’s call these the “missing data gotchya’s”. Let’s discuss
some of these now.

2.1 NaN vs NA

In R, there is a special value, NaN, which stands for “Not a Number”. A NaN will come from
operations like the square root of -1:

sqrt(-1)

Warning in sqrt(-1): NaNs produced
[1] NaN

Now, R actually interprets NaN as a missing value, treating it the same way it treats NA. Even
if it is technically not a missing value.

any_na(NaN)

[1] TRUE

This might come up in a data analysis, if you were to transform some data with the square
root and then count the number of missing values, and there is a negative value, you might
get caught out.

library(tidyverse)

14



-- Attaching packages ----————------—"————————————————————————— tidyverse 1.3.1 --

v ggplot2 3.3.6 v purrr 0.3.4
v tibble 3.1.7 v dplyr 1.0.9
v tidyr 1.2.0 v stringr 1.4.0
v readr 2.1.2 v forcats 0.5.1
-- Conflicts -————----------""""""""""""""7"7"7":°°7°-7-""--——- tidyverse_conflicts() --

x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()

library(naniar)
vec <- c(-1:4)
sqrt(vec)

Warning in sqrt(vec): NaNs produced

[1] NaN 0.000000 1.000000 1.414214 1.732051 2.000000

sqrt(vec) 7%>% n_missQ)

Warning in sqrt(vec): NaNs produced

(11 1

2.2 NULL vs NA

In R, NULL is an empty value. For example, if we create a vector of NULL values, only one
appears

c(NULL, NULL, NULL)

NULL

Compare this to a vector of NA values:

15



c(NA, NA, NA)

[1] NA NA NA

Importantly, NULL values are not missing values, but rather just “empty” values. This is
subtly different from missing: An empty bucket isn’t missing water.

any_na(NULL)

[1] FALSE

Another way to think about this is if you were recording features of animals - animals are all
quite different! So you record horn_length of a mouse as NULL - because mice do not have
horns. It’s not that it should have been recorded and wasn’t - it shouldn’t be recorded because
it doesn’t exist.

2.3 Inf vs NA

Inf is an Infinite value, and results from equations like 10/0:

10/ 0

[1] Inf

It is not counted as a missing value

any_na(Inf)

[1] FALSE

16



3 “NA” vs NA

Using the function is.na() will return true for NA

is.na(NA)

[1] TRUE

But for a quoted character, “NA”, is not missing.

is.na("NA")
[1] FALSE

3.1 Conditional statements and NA

Beware of conditional statements with missing values. For example:

¢ NA or TRUE is TRUE
e NA or FALSE is NA

¢ NA + NaN is NA

e NaN + NA is NaN

NA | TRUE

[1] TRUE

NA | FALSE

[1] NA

17



NA + NaN
(1] NA
NaN + NA

[1] NaN

3.2 The multiple flavours of NA values

NA values represent missing values in R. There are actually many different flavours of NA
values in R:

e NA for logical

e NA_character_ for characters

e NA_integer_ for integer values

e NA_real_ for doubles (values with decimal points)
o NA_complex_ for complex values (like 1i)

So what? What does this mean?

is.na(NA)
[1] TRUE
is.na(NA_character )
[1] TRUE
is.character (NA character )
[1] TRUE
is.double(NA_character_)

[1] FALSE

18



is.integer (NA_integer_)

[1] TRUE

is.logical(NA)

[1] TRUE

Uhhh-huh. So, neat? Right? NA values are this double entity that have different classes?
Yup! And they’re among the special reserved words in R. That’s a fun fact.

OK, so why care about this? Well, in R, when you create a vector, it has to resolve to the
same class. Not sure what I mean?

Well, imagine you want to have the values 1:3

c(1,2,3)

[1] 1 23

And then you add one that is in quotes, “hello there”:

c(1,2,3, "hello there")

[1] lllll ||2ll ||3ll Ilhello therell

They all get converted to “character”.

WEell, it turns out that NA values need to have that feature as well, they aren’t this amorphous
value that magically takes on the class. Well, they kind of are actually, and that’s kind of the
point - we don’t notice it, and it’s one of the great things about R, it has native support for
NA values.

So, imagine this tiny vector, then:

vec <- c("a", NA)
vec

[1] "a" NA

19



is.character(vec[1])

[1] TRUE

is.na(vec[1])

[1] FALSE

is.character(vec[2])

[1] TRUE

is.na(vec[2])

[1] TRUE

OK, so, what’s the big deal? What’s the deal with this long lead up? Stay with me, we're

nearly there:

vec <- c(1:5)
vec

[1] 12345

Now, let’s say we want to replace values greater than 4 to be the next line in the song by
Feist.

If we use the base R, ifelse:

ifelse(vec > 4, yes = "tell me that you love me more", no = vec)
[1] l|1ll ll2"
[3] Il3ll II4II

[5] "tell me that you love me more"

It converts everything to a character. We get what we want here.

Now, if we use dplyr::if_else:

20
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dplyr::if_else(vec > 4, true = "tell me that you love me more", false = vec)

Error in “dplyr::if_else() ":
! "false” must be a character vector, not an integer vector.

000, an error? This is useful because you might have a case where you do something like
this:

dplyr::if_else(vec > 4, true = "5", false = vec)

Error in “dplyr::if_else() ":
! "false™ must be a character vector, not an integer vector.

Which wouldn’t be protected against in base:

ifelse(vec > 4, yes = "5", no = vec)

[1] l|1ll "2" ll3ll II4|| ll51l

So why does that matter for NA values?

Well, because if you try and replace values more than 4 with NA, you’ll get the same error:

dplyr::if_else(vec > 4, true = NA, false = vec)

Error in “dplyr::if_else() ":
! "false™ must be a logical vector, not an integer vector.

But this can be resolved by using the appropriate NA type:

dplyr::if_else(vec > 4, true = NA_integer_, false = vec)

[1] 1 2 3 4 NA

21



And that’s why it’s important to know about.

It’s one of these somewhat annoying things that you can come across in the tidyverse, but it’s
also kind of great. It’s opinionated, and it means that you will almost certainly save yourself
a whole world of pain later.

What is kind of fun is that using base R you can get some interesting results playing with the
different types of NA values, like so:

ifelse(vec > 4, yes = NA, no = vec)

[1] 1 2 3 4 NA

ifelse(vec > 4, yes NA_character_, no = vec)

[1] ||1n ||2|| ||3|| n4|| NA

It’s also worth knowing that you’ll get the same error appearing in case_when:
dplyr: :case_when(
vec > 4 ~ NA,

TRUE ~ vec
)

Error in names(message) <- “*vtmp* : 'names' attribute [1] must be the same length as the ve

But this can be resolved by using the appropriate NA value
dplyr: :case_when(
vec > 4 ~ NA_integer_,

TRUE ~ vec
)

[1] 1 2 3 4NA

22
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4 Explore missing values

library(naniar)
library(dplyr)

In previous sections, we learned what missing values are, how R deals with them in basic
operations, and several ways (including with any_na and are_na) to perform a cursory check
for missing values in our data. A critical next step in exploring missingness is to wvisualize
missing values, which can reveal patterns of missingness across variables (columns) and cases
(rows) in our data.

4.1 Explore “big picture” missingness

To start, recommend getting a “bird’s eye view” of missingness in the data. We can get started
with a few big picture questions:

¢ Where, and how frequently, do missing values occur in the data overall?
e How often, and across what variables, do missing values co-occur?
e Are there notable patterns of missingness across groups?

We will approach these questions using using five functions from the naniar package:

e vis_miss to visualize where NA exist in a data frame

e n_miss for overall frequency of NA

e prop_miss for the proportion of values in the data that are NA

e gg_miss_upset to visualize overall co-occurrence of missingness

e gg miss_fct for a heatmap of missingness across variables, by groups

Note that not all of these functions are for visualisation.

4.1.1 vis_miss to visualize locations of missing values
When you first get a dataset, it can be difficult to get a visceral sense of where missing values

are. To get an overview of the prevalence and patterns of missingness in the data, use the
vis_miss function. This function is in naniar and is exported from the visdat package.

24



For example, with the built-in airquality dataset:

vis_miss(airquality)

Warning: “gather_()~ was deprecated in tidyr 1.2.0.

Please use “gather()” instead.

This warning is displayed once every 8 hours.

Call “lifecycle::last_lifecycle_warnings()~ to see where this warning was generated.
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The vis_miss function produces an out-of-the-box binary heatmap of missing values, where
each “cell” in the heatmap corresponds to an element in the original data. In other words,
we can think of the heatmap as a “spreadsheet” of the original data, where values have been
replaced with one of two colors: black cells to indicate missing values, and gray cells to indicate
non-missing values.

vis_miss also provides useful summary statistics, showing the overall percentage of missing-
ness in the legend (at bottom), and the amount of missings in each variable (alongside column
labels). The function also allows for clustering of the missing data by setting cluster = TRUE:
this orders the rows by missingness to identify common co-occurrences.

vis_miss(airquality, cluster = TRUE)
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What can we learn from the vis_miss output?

From the vis_miss output, we can consider big picture questions about missingness prevalence
and patterns. For example:

e Do missing values appear randomly distributed throughout the data, or are they clustered
within several variables?
o Are there notable streaks of missingness within variable(s), and why might those exist?

Considering the visualization above for vis_miss(airquality). We might interpret the out-
put as follows: Overall prevalence of missingness is low (4.8% missing), and there are only
missing values in two variables: Ozone (24.8% missing) and Solar.R (4.58% missing). Missing
values do not necessarily co-occur. There are several streaks of missingness (shown as black
areas spanning adjacent cases), most notably in the Ozone variable from rows 52 - 61.

4.1.2 Overall counts and proportions of missing values

If we have a very small dataset, like the vector x shown below, we can locate and count missing
values manually, by simply counting in our heads how many NA values there are.

x <= c(1, NA, 3, NA, NA, 5, 8)
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But this doesn’t scale. What if we had a vector of length 2,8927 Or a 52 column x 841,000
row data frame? It would be nigh-impossible to find and count all NA values.

Visualisation is great, but sometimes we just need a hard number, so you can say something like,
“54% of the data is missing!”. Use n_miss and prop_miss for a quick quantitative summary of
overall missingness. Both return a single value for the total count and proportion of missing
values in the entire data frame.

The n_miss function returns the total count all values in the data that are NA:
n_miss(x)
[1] 3

The prop_miss function returns the proportion of missings, which gives important context:
here, we see that 42.86% of values in the data are missing.

prop_miss(x)

[1] 0.4285714

The complements of n_miss and prop_miss aren_complete and prop_complete, which return
the number and proportion of complete (non-missing) values, respectively.

n_complete(x)

(1] 4

prop_complete(x)

[1] 0.5714286

The examples above show how we can use n_miss, prop_miss, and their complements for a
small vector (x). We can apply them similarly to the larger airquality data used in the
vis_miss example above.

To find the total number of NA in airquality:

n_miss(airquality)
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[1] 44

And for the proportion of NA in airquality:

prop_miss(airquality)

[1] 0.04793028

Which tells us that there are 44 total missing values in airquality, or 4.79%. Note that this
total proportion of missingness matches the value reported from vis_miss.

That is much quicker, easier (and safer, and more reproducible!) than manually searching for
and counting missing values, especially in larger data.

An Aside

Under the hood, n_miss(x) is computed as sum(is.na(x)), and prop_miss(x) is
mean (is.na(x)). These are rather brief short hand functions - so you might ask why bother
making them? I believe it is because there is actually a fair bit packed into these functions.
sum(is.na(x)) works because the output of is.na(x) is logical, and you can add logicals
together, as TRUE and FALSE are coerced to 1 and 0, respectively. Similarly, you can take
the mean of logicals. However, as a new R user, I found this a bit magical and wasn’t able
to remember the right way to do it. A nice consequence of more descriptive names, n_miss
and prop_miss is that we can take the complement, so a user can use tab-complete to also
find n_complete and prop_complete. These functions are implemented as sum(!is.na(x))
and prop(!is.na(x)), which again, I think can be a lot to remember, especially when first
starting out with R. Descriptively naming these functions is an important part of how naniar
is designed.

4.1.3 Co-occurrence of missing values
To visualise common combinations of missingness - for example, which variables and cases tend

to be missing together - we can use gg_miss_upset to create an UpSet plot [?]. This powerful
visualisation shows the frequency of unique combinations of missing value co-occurrence.

We create an UpSet plot like so:

gg_miss_upset(airquality)
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There is a lot going on, here are the main pieces:

e The vertical bars indicate the frequency of unique missingness combinations, indicated
by the dots below each bar that correspond to variable names to their left

e The horizontal bars in the lower left indicate the total number of missing values for each
variable

For example, let’s first consider the vertical bar of height 2 (on the far right), beneath which
there are black dots next to both Solar.R_NA and Ozone NA. That bar indicates that there
are 2 cases (rows) in the data where exactly the Solar.R and Ozone variables contain NA.

The other two bars indicate that there are exactly 35 cases in which only the Ozone variable
value is NA, and 5 cases in which only the Solar.R variable value is NA.

To summarize: gg_miss_upset creates an UpSet plot to visualize frequency of missing value
combinations (co-occurrence) across variables.

4.1.4 Visualize missingness by factor level
To explore how missingness varies across factor levels within variables, use gg_miss_fct. Below

we create a heatmap showing the prevalence of missingness across all variables in airquality,
separated by each level in the Month variable:
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gg_miss_fct(x = airquality, fct = Month)
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The output is a heatmap, with the x-axis showing the levels of the specified factors, and the
y-axis showing other variables in the data, and colour showing the frequency of missingness
(purple = lower missingness, yellow = higher missingness).

We see that the output of gg_miss_fct here, with each level of Month on the x-axis, clearly
shows the highest proportion of missingness occurs for the Ozone variable in Month 6 (in
agreement with previous summary outputs). Note: gg_miss_fct does not support facetting.

These “big picture” analyses or missingness are an essential starting point in exploration
because they show us how much of the data is missing overall, and can reveal patterns in
missingness (e.g. streaks, co-occurrence, and differences between factor levels). Next, it is
important to further investigate how missingness occurs within variables (columns) and cases
(rows).
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5 Missingness by variables (columns) and
cases (rows)

library(naniar)
library(dplyr)

Once we have a broad overview of missingness in the data, the next step is to explore how
missingness exists at finer resolution within variables and cases. You might also refer to
variables and cases as “columns” and “rows”, but for consistency, we will use “variables” and
“cases”. Below are the functions we will use in this section to explore missingness in variables
and cases:

Functions to explore missingness by variable:

e gg_miss_var: visualise frequency of missingness by variable
e miss_var_summary: table of missingness frequency by variable
e miss_var_table: table of missing frequencies by variable

Functions to explore missingness by case:

e gg_miss_case: visualise frequency of missing values by case
e miss_case_summary: table of missingness frequency by case
e miss_case_table: table of missing frequencies by case

An aside

You might notice that there is a lot of similarity in the naming and purpose of each of these
functions - this is intentional! They are designed to have names that help cue your understand-
ing or purpose of the next task. There are many other functions that start with miss_var_
and miss_case, and gg_miss. These functions have been written like so to facilitate explo-
ration of new functions, and also to reduce the cognitive burden of trying to remember what
a function is called. Instead, you can focus on, “I want to explore missings by variable - I’ll
start by exploring what is in miss_var”, and if you want to create visualisations, you can use
gg_miss_* to explore available options.
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5.0.1 Missingness within variables

The gg_miss_var and miss_var_summary functions in naniar return visual and tabular sum-
maries, respectively, of missingness within each variable. For example, gg_miss_var applied
to the airquality returns a lollipop plot with the frequency of missingness on the x axis, and
the variable name on the y-axis:

gg_miss_var(airquality)

Warning: It is deprecated to specify “guide = FALSE"™ to remove a guide. Please
use "guide = "none"  instead.

Ozone

Solar.R —_—0

S Wind e
o
.8
c>lj Temp °
Month °
Day °
0 10 20 30

# Missing

Note that the visualisation is ordered (high-to-low) by variable highest frequency of missing
values.

To instead create a table with the number and percentage of missing values for each variable

(column), use miss_var_summary:

miss_var_summary(airquality)

32



# A tibble: 6 x 3
variable n_miss pct_miss

<chr> <int> <dbl>
1 Ozone 37 24.2
2 Solar.R 7 4.58
3 Wind 0 0
4 Temp 0 0
5 Month 0 0
6 Day 0 0

We see that miss_var_summary () returns a data frame where each row in the output contains
the total number (n_miss) and percentage (pct_miss) of missing values for each variable
in the original data. Note that miss_var_summary and gg_miss_summary give us the same
information, presented differently: the values in the miss_var_summary table for each variable
align with the frequency of missingness indicated on the x-axis from the gg_miss_var output.

An example of how to interpret missingness within variables from miss_var_summary and
gg_miss_var is:

An overview of missingness in the in the airquality dataset (n
Ozone variable has the highest frequency of missing values (n,;sing = 37; percent
missing = 24.2%), followed by Solar.R. (n,isine = 7; percent missing = 4.6%). The
remaining four variables (Wind, Temp, Month, and Day) contain no missing values.

= 153). The

obs

5.0.1.1 Missingness by variable, within groups
We can explore missingness in detail within each variable by using the facet argument, which
will split each plot into one facet per level of a variable. The example below shows the number
of missing values in each variable (gg_miss_var) in the airquality data, now broken up by
the different levels in Month.

gg_miss_var(airquality, facet = Month)

Warning: It is deprecated to specify “guide = FALSE"™ to remove a guide. Please
use “guide = "none"  instead.
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In the graph above, we can see there is now a separate panel for each month appearing in the
data (5, 6, 7, 8, and 9), to allow for a comparison of missingness by variable across and within
each month.

The same information can be reported in tabular form by miss_var_summary in combination
with group_by to designate which variable to group by. For example, we parse missingness by
Month in the airquality dataset:

airquality %>%
group_by (Month) %>%
miss_var_summary ()

# A tibble: 25 x 4
# Groups: Month [5]
Month variable n_miss pct_miss

<int> <chr> <int> <dbl>
1 5 Ozone 5 16.1
2 5 Solar.R 4 12.9
3 5 Wind 0 0
4 5 Temp 0 0
5 5 Day 0 0
6 6 Ozone 21 70

34



7 6 Solar.R 0 0
8 6 Wind 0 0
9 6 Temp 0 0
10 6 Day 0 0
# ... with 15 more rows

Here, we see the Ozone variable contains 5 missing values for Month 5, and 21 missing values
for Month 6.

5.0.1.2 miss_var_table

It can be useful to explore how often (i.e., for how many variables or cases) different frequencies
of missingness occur. That’s kind of a brainful, so here are some example questions we might
ask:

“How many variables contain zero missing values?”
“How many variables contain one missing values?”
“How many variables contain two missing values?”

The miss_var_table() function tells us how many variables contain different frequencies of
missingness. For example, we can use miss_var_table with our airquality data to calculate
and return the number of variables with different frequencies of missing values:

miss_var_table(airquality)

# A tibble: 3 x 3
n_miss_in_var n_vars pct_vars

<int> <int> <dbl>

1 0 4 66.7
7 1 16.7

3 37 1 16.7

The table returned above tells us the following:

e Row 1 in output table: four variables (n_vars = 4, or 66.7% of all variables) contain
zero missing values (n_miss_in_var = 0)

o Row 2 in output table: one variable (n_vars = 1, or 16.7% of all variables) contains 7
missing values (n_miss_in_var = 7)

e Row 3 in output table: one variable (n_vars = 1, or 16.7% of all variables) contains
37 missing values (n_miss_in_var = 37)
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Writing this as a brief summary, we might write:

Four variables (~ 66.7% of columns) contain no missing values; one variable contains
7 missing values, and one variable contains 37 missing values.

5.0.2 Missingness by case (rows)
The gg_miss_case() and miss_case_summary() functions return visual and tabular sum-
maries of missingness by case (row) within the data. For example, to visualize missingness by

case:

gg_miss_case(airquality)
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Note that the visualisation is similarly ordered (high-to-low) by case(s) with the highest
frequency of missing values. The ordering in gg_miss_case can be turned off with option,
order_cases = FALSE, which will keep the order of the data as presented to the function.

gg_miss_case(airquality, order_cases = FALSE)
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For a tabular summary of missingness by case, use miss_case_summary. Themiss_case_summary
function returns a summary data frame with the frequency and percentage of missing values
for each case (row) in the original data, arranged by decreasing missingness.

miss_case_summary(airquality)

# A tibble: 153 x 3
case n_miss pct_miss

<int> <int> <dbl>

1 5 2 33.3

2 27 2 33.3

3 6 1 16.7

4 10 1 16.7

5 11 1 16.7

6 25 1 16.7

7 26 1 16.7

8 32 1 16.7

9 33 1 16.7

10 34 1 16.7
# ... with 143 more rows

In the example output above, the case column contains the original row number (case) in the
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data, and the frequency and percent missing is returned for each case. Here, we can interpret
the first two rows of this summary as follows:

In the airquality dataset, cases 5 and 27 - the 5" and 27" rows in the original
dataset - each contain 2 missing values (i.e. 2 of 6 values, or 33.3%, in each row
are missing).

5.0.2.1 Missingness by case, within groups
Missingness by case can be further explored within groups by faceting (with gg_miss_case)
or in combination with group_by.

To visualize missingness by case within groups, add a faceting variable to the argument facet.
The example below shows the number of missing values in each case (gg_miss_case) in the
airquality data, faceted by Month.

gg_miss_case(airquality, facet = Month)
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To return the above data (missingness by case, separated by each level in Month) in tabular
form, use miss_case_summary in combination with group_by:
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airquality %>%
group_by (Month) %>7
miss_case_summary ()

# A tibble: 153 x 4
# Groups: Month [5]
Month case n_miss pct_miss

<int> <int> <int> <dbl>
1 5 5 2 40
2 5 27 2 40
3 5 6 1 20
4 5 10 1 20
5 5 11 1 20
6 5 25 1 20
7 5 26 1 20
8 5 1 0 0
9 5 2 0 0
10 5 3 0 0
# ... with 143 more rows

5.0.2.2 miss_case_table

We may want to know:
“How many cases are complete (no missing values)?”
“How many cases have one missing value?”
“How many cases have two missing values?”

The miss_case_table function in naniar tells us how many cases contain different frequencies
of missingness. The example below returns the number of cases (rows) in the airquality data
that contain different numbers of missing values:

miss_case_table(airquality)

# A tibble: 3 x 3
n_miss_in_case n_cases pct_cases

<int> <int> <dbl>

1 0 111 72.5
1 40 26.1

3 2 2 1.31
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We could summarize the output above as follows:

The majority of cases (72.5%) are complete, 26.1% of cases contain one missing
value, and ~1.3% of cases contain two missing values; no cases contain more than
two missing values.

Using the naniar functions in this section, we got a more detailed view of missingness within
variables and cases. In the next section, we investigate patterns of missingness streaks and
spans.
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6 Missingness in spans and streaks

library(naniar)
library(tidyverse)

In previous sections, we learned how to visualize and tabulate missingness for our data overall,
and at finer resolution within variables and cases. Another pattern of missingness we can
explore are the streaks and spans of missingness, which are defined as follows:

e Streaks are sequential missing or non-missing values. For example, the vector c(4, 8,
NA, NA, NA, 5) has a streak of two non-missing values (4 and 8), followed by a streak
of three missing values, followed by a “streak” of one non-missing value (5). You can see
this below in figure Qref(fig:plot-span-streak) on the column “weekday”, where there is
a streak of missingness at the start, and at the end of the column. We see that there is
some overall pattern here, but we do not have information on the details of the streak,
specifically, how many observations before the missingness starts, between missingness,
and so on.

e Spans are repeated periods within the data that we want to explore missingness within,
and between. For example, if we have air quality data recorded at 1-hour intervals,
we may want to explore the prevalence of missingness within each 1-day span. In that
case, each span would consist of 24 sequential observations. We can see missingness over
repeating spans in the “temp” column in figure Qref(fig:plot-span-streak). Notably, we
can get some information from this that missingness appears to repeat and be a similar
size, but we do not have further details on the size of these patches of missingness.

add_n na <- function(x, n_na){
x[sample(x = vctrs::vec_size(x), size = n_na)] <- NA
X

splice_n_na <- function(x, position, n_na){
x[position: (position+n_na)] <- NA
X
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dat_span <- expand_grid(
weekday = 1:7,
hour = 1:24
) h>%
mutate(
temp = floor(runif(n = 168, min = 11, max = 29)),
temp = splice_n_na(temp, position = 12, n_na = 5),
temp = splice_n_na(temp, position = 36, n_na = 5),
temp = splice_n_na(temp, position = 60, n_na = 5),
temp = splice_n_na(temp, position = 84, n_na = b),
temp = splice_n_na(temp, position = 108, n_na = 5),
5),
weekday = splice_n_na(weekday, position = 26, n_na
weekday = splice_n_na(weekday, position = 98, n_na

temp = splice_n_na(temp, position = 132, n_na
40),
15),

vis_miss(dat_span)

Warning: “gather_()° was deprecated in tidyr 1.2.0.

Please use “gather()~ instead.

This warning is displayed once every 8 hours.

Call “lifecycle::last_lifecycle_warnings()~ to see where this warning was generated.
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Figure 6.1: Made up data of weekday, hour, and temperature

Below are the functions we will use in this section to explore missingness in spans and
streaks

o gg_miss_span(): visualise the proportion of missing values by span

e miss_var_span(): table containing counts and proportions of missingness by span

e miss_var_run(): table containing lengths of streaks for missing and non-missing values
in the data

6.0.1 Missingness in spans

The gg_miss_span() and miss_var_span() functions in naniar provide visual and tabular
summaries of missing values in user-specified spans, or equally-sized periods, within the data.

Let’s show the data we visualised using vis_miss() in figure Qref(fig:plot-span-streak):

knitr::kable(head(dat_span, 26))

weekday hour temp

1 1 22
1 2 24
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weekday hour temp

1 3 19
1 4 24
1 ) 15
1 6 19
1 7 22
1 8 12
1 9 24
1 10 13
1 11 26
1 12 NA
1 13 NA
1 14 NA
1 15 NA
1 16 NA
1 17 NA
1 18 11
1 19 11
1 20 17
1 21 14
1 22 19
1 23 21
1 24 15
2 1 13
NA 2 12

This is a fake dataset that contains information of weekday (1 through to 7), the hour of the
day, and the temperature recorded that day.

We noticed before the regular “stripey” patterns of missingness in Figure Qref(fig:plot-span-
streak) in the temp variable. Although we have information on the amount of missingness in
this variable from vis_miss, we do not have further information on how often it occurs. Let’s
learn more about this by using the gg_miss_span() function:

gg_miss_span(data = dat_span,

var = temp,
span_every = 12)
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What is figure Qref(fig:gg-miss-span-dat)) showing us? We have calculated the missingness
in the temp variable, where the missingness is calculated over some repeating span. The
span_every argument of 12 means missing frequency and proportion will be evaluated every
12 row. So, for observations 1 to 12, then 13-24, then 25-36, and so on. Each of the spans is
indicated on the x-axis; and on the y-axis, we see the proportion of values within each span.

How do we interpret figure Qref(fig:gg-miss-span-dat)? In this case, since the data occurs
every hour, with a span of 12, we are looking at the proportion of missingness at every 12 hour
interval. Notice we get a strong repeating pattern of missingness, but it seems a bit lopsided,
like the proportion of missingness is bleeding over from hours 12-15, perhaps? What happens
if we explore every 24 hours?

gg_miss_span(data = dat_span,

var = temp,
span_every = 24)
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Ah! Notice that we're getting some missingness every 12 hours.

6.0.2 Example: Pedestrian data
Let’s consider the pedestrian dataset in naniar, which contains “hourly counts of pedestrians
from 4 sensors around Melbourne”. See the dataset documentation (?pedestrian) for further

details and citation.

glimpse (pedestrian)

Rows: 37,700
Columns: 9

$ hourly_counts <int> 883, 597, 294, 183, 118, 68, 47, 52, 120, 333, 761, 1352~
$ date_time <dttm> 2016-01-01 00:00:00, 2016-01-01 01:00:00, 2016-01-01 02~
$ year <int> 2016, 2016, 2016, 2016, 2016, 2016, 2016, 2016, 2016, 20~
$ month <ord> January, January, January, January, January, January, Ja~
$ month_day <int> 1,1, 1, 1,1, 1, 1,1, 1, 1,1, 1, 1,1, 1, 1,1, 1, 1,~
$ week_day <ord> Friday, Friday, Friday, Friday, Friday, Friday, Friday, ~
$ hour <int> 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16~
$ sensor_id <int> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,2,2,2,2,2,2,2,2,-~
$ sensor_name  <chr> "Bourke Street Mall (South)", "Bourke Street Mall (South~
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An aside on choosing interval size

Importantly, observations in the pedestrian data are recorded at equal hourly
intervals, making equal spans of interest. If data are recorded at non-equal intervals,
or intermittently, investigating missingness by span may not be meaningful or
informative. This is because when we explore something by a fixed interval, we
want the data to have meaning at that fixed interval. If we explored our data that
occurs at hourly intervals in 10 hour intervals, it might be hard to understand why
10 hours is chosen, as it might not make sense as it goes on from hour 0-10, 11-20,
21-30, and so on. Whereas if instead 12 hour or 24 hour intervals were chosen then
those naturally break down into the first and second half of a day. So, all this is
to say that it is important to think carefully on interval size when investigating
equally-sized spans data.

Since the pedestrian observations are recording at equal intervals (and therefore spans are
meaningful), it may be useful to explore the prevalence of missing values within repeated,
equally-sized spans.

In the example below, missingness in the hourly_counts variable from pedestrian is calcu-
lated over repeating spans; the span_every argument indicates that missingness should be
evaluated for each span of 672 observations. Why 6727 Well there aer 168 hours every 7 days,
and 672 hours every 4 weeks - so this shows us the amount of missing data every 4 weeks.

gg_miss_span(pedestrian, hourly_counts, span_every = 672)
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How do we interpret the output above from gg_miss_span? We see that with a selected span
size of 672, there are a total of 56 spans included, since there are 37,700 rows (672 * 56 =
37,632). Each of the spans is indicated on the x-axis; on the y-axis, the proportion of values
within each span is indicated.

We can get the tabular format of the data put into gg_miss_span with miss_var_span:
miss_var_span(pedestrian,

var = hourly_counts,
span_every = 672)

# A tibble: 57 x 6
span_counter n_miss n_complete prop_miss prop_complete n_in_span

<int> <int> <int> <dbl> <dbl> <int>
1 1 0 672 0 1 672
2 2 0 672 0 1 672
3 3 0 672 0 1 672
4 4 0 672 0 1 672
5 5 0 672 0 1 672
6 6 0 672 0 1 672
7 7 0 672 0 1 672
8 8 0 672 0 1 672
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9 9 0 672 0 1 672
10 10 1 671 0.00149 0.999 672
# ... with 47 more rows

Notice that the outputs for the two examples above reveal the same information, either in
visual or tabular form. Let’s interpret some values to see how they align:

e The first column in the graph from gg_miss_span above does not appear to contain any
missing values; that is confirmed in the first row from miss_var_span above showing
that in span_counter 1 there are 0 missing values

e The tenth column in the gg_miss_span graph (span_counter 10) has some proportion
of missing values within the span; from the miss_var_span output we can see that there
is 1 missing values in that span (0.1% missing)

6.0.2.1 Missingness within spans, by group

You can further break down missingness within spans by group, by faceting with gg_miss_span
or grouping data prior to using miss_var_span.

For example, the above investigation of missingness for hourly_counts in pedestrian, using
a span size of 168 cases (1 week), can be faceted by sensor_name as follows:

gg_miss_span(data = pedestrian,
var = hourly_counts,
span_every = 168,
facet = sensor_name)
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We can produce the analogous tabular version of that result by grouping data (group_by (month))
before miss_var_summary as follows:

pedestrian %>%
group_by(sensor_name) %>%
miss_var_span(var = hourly_counts,
span_every = 168)

# A tibble: 226 x 7

# Groups: sensor_name [4]
sensor_name span_counter n_miss n_complete prop_miss prop_complete n_in_span
<chr> <int> <int> <int> <dbl> <dbl> <int>
1 Bourke Stre~ 1 0 168 0 1 168
2 Bourke Stre~ 2 0 168 0 1 168
3 Bourke Stre~ 3 0 168 0 1 168
4 Bourke Stre~ 4 0 168 0 1 168
5 Bourke Stre-~ 5 0 168 0 1 168
6 Bourke Stre~ 6 0 168 0 1 168
7 Bourke Stre-~ 7 0 168 0 1 168
8 Bourke Stre~ 8 0 168 0 1 168
9 Bourke Stre-~ 9 0 168 0 1 168
10 Bourke Stre~ 10 0 168 0 1 168
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# ... with 216 more rows

How do we interpret these outputs grouped by sensor_name? Well, this is very interesting -
it looks like there is only missingness in two of the sensors, Birrarung Marr and Spencer St -
Collins St (South). Within those two, it looks like some of the sensors were down a few weeks.
Let’s filter down to “Birrarun Marr” and explore that further, facetting by month and showing
the weekly amounts of missinginess:

pedestrian %>%
filter(sensor_name == "Birrarung Marr") %>7
gg_miss_span(var = hourly_counts,
span_every = 168,
facet = month)

Proportion of missing values
Over a repeating span of 168

January February March April

1.00

0.75

0.50

0.25
o 0.00
£
) May June July August
%]
= 1.00
E 0.75
S ggg I Present
g 0.00 . Missing
g September October November December

1.00
0.75
0.50
0.25
0.00

255075 255075 255075 255075
Span

It looks like there was an outage from the second week in April until the first week of May,
then into October and November.

Aside: What happens to span remainders

What happens if you have a span that doens’t fit into the number of rows of a
dataset? For example, if you have spans of 50, and there are 168 rows? The final
span, which would be have rows 151-168, and the proportion of missingness will
be calculated as that set of data.
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6.0.3 Streaks of missingness

Another way to explore patterns in missingness is by lengths of streaks for non-missing and
missing values. For any vector (or variable in a data frame), the miss_var_run function in
naniar returns the length of runs for complete and missing values. This can be particularly
useful for finding repeating patterns of missingness.

For example, to explore streaks of missingness in the hourly_counts variable from the
pedestrians data we can use:

miss_var_run(pedestrian, hourly_counts)

# A tibble: 35 x 2
run_length is_na
<int> <chr>
6628 complete
1 missing
5250 complete
624 missing
3652 complete
1 missing
1290 complete
744 missing
7420 complete
1 missing
# ... with 25 more rows

© 00 NO O WN -
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o

What can we learn from the output above? There is a long initial streak (n = 6,628) of
complete values for hourly__counts, the a single missing value, followed by another long streak
of complete values (n = 5,250) before a more substantial streak of missingness (n = 624), and
SO on.

We can use miss_var_run with group_by to explore runs of missing data within months:

pedestrian %>%
group_by (month) %>%
miss_var_run(var = hourly_counts)

# A tibble: 51 x 3

# Groups: month [12]
month run_length is_na
<ord> <int> <chr>
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1 January 2976
2 February 2784
3 March 2976
4 April 888
5 April 552
6 April 1440
7 May 744
8 May 72
9 May 2160
10 June 2880
# ... with 41 more rows

Or within sensors:

pedestrian %>%
group_by(sensor_name) %>%
miss_var_run(var = hourly_counts)

complete
complete
complete
complete
missing

complete
complete
missing

complete
complete

# A tibble: 38 x 3
# Groups: sensor_name [4]
sensor_name run_length
<chr> <int>
1 Bourke Street Mall (South) 6628
2 Bourke Street Mall (South) 1
3 Bourke Street Mall (South) 2898
4 Birrarung Marr 2352
5 Birrarung Marr 624
6 Birrarung Marr 3652
7 Birrarung Marr 1
8 Birrarung Marr 1290
9 Birrarung Marr 744
10 Birrarung Marr 792
# ... with 28 more rows

or within each month for each sensor name:

pedestrian %>%

group_by (month,
sensor_name) %>%
miss_var_run(var = hourly_counts)
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is_na
<chr>
complete
missing
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# A tibble: 82 x 4

# Groups: month, sensor_name [48]
month sensor_name
<ord> <chr>
1 January Bourke Street Mall (South)
2 February Bourke Street Mall (South)
3 March Bourke Street Mall (South)
4 April Bourke Street Mall (South)
5 May Bourke Street Mall (South)
6 June Bourke Street Mall (South)
7 July Bourke Street Mall (South)
8 August Bourke Street Mall (South)
9 September Bourke Street Mall (South)
10 October Bourke Street Mall (South)
# ... with 72 more rows

We can imagine questions that might arise when considering streaks of missingness: Were there
changes in sampling protocols? Did the person, equipment, or study site change? Did funding
get cut? Any of these might help to understand why values are missing, an important question
when working with incomplete data and useful when deciding how to deal with missing values

in analyses.
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7 Cleaning missing data

library(naniar)
library(dplyr)

7.1 Find and replace missing values

In previous sections, we learned how to count, summarise and visualise missing values stored
as NA. Often, however, raw data contain missing values that have been recorded as something
other than NA. These include things like characters (e.g. “missing”, “N/A”, or “no data”) or
impossible values (e.g. “-9999” for a dolphin length variable).

Always take care when working with data, especially if you did not collect or record it your-
self:

Never assume that all missing values are stored as NA

The problem is most functions assessing missingness only recognize NA, so they will not recog-
nize other missing value inputs, such as “NA”, or “missing”. That means the first thing we
often need to do is search for missing values stored as something other than NA in our data,
then replace those non-NA missing values with NA so our assessments of missingness, and
subsequent analyses, are accurate.

In this section, we introduce tools and strategies to:

e Search for missing values stored as something other than NA
o Replace them with NA

We introduce the following functions to help us:

e miss_scan_count(): search for missing values stored as something other than NA
(e.g. “N/A”, “-999” “” etc.)
e replace_with_na(): replace non-NA values with NA

We will use a dataset called chaos, shown below, which contains gnarly values like plain
whitespace, ” ¢, full-stops (or periods)””, “N/A”, and “missing” - all of which, in this case,
should be stored as NA.
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chaos <- tibble::tibble(

score = c(3L, -99L, 4L, -99L, 7L, 10L, 12L, 16L, 9L),
grade = C(”N/A.“, ||Ell, ||missing||’ "nall, ||n/a||, n ll, ||'||’ NA, ||N/a||),
place = c(-99, 97, 95, 92, -98, "missing", 88, ".", 86)

)

knitr: :kable(chaos)

score grade place
3 N/A -99
99 E 97
4 missing 95
-99 na 92
7 nj/a -98
10 missing
12 . 88
16 NA .
9 N/a 86

An Aside: Talk to the people who collect or curate the data

If you have access to the people who collect or curate the data, talk to them! It
is amazing how much they can tell you about the data that you might not have
ever known. You will get the most out of the conversation if you’ve had a look at
the data first, and noted any abnormalities. Asking questions like “what did you
do with missing data? How are missing values encoded? How did you collect the
data? Did you summarise the data before giving it to me? Is this the most raw
form of the data? Are good questions to help you get started. Also, remember to
be friendly to these people. I know from experience that it can be very frustrating
to have data that is poor or low quality, where missing values are deleted, or the
data is summarised to the point of no variation. However it is important to keep
in mind that these people who collect or curate the data are often trying to help
you by saving you time summarising. Be kind, and be curious. And ask for the
data in the rawest form.

7.1.1 Search for missing values
Before we can start replacing unexpected missing values with NA, we should get a sense of

how big this missing data problem is by searching for those strange missing values. The
miss_scan_count function in naniar allows you to search for likely records of missing values
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stored as something other than NA. For example, if we want to check for missing values that
are input as “N/A”, we can use:

chaos %>%
miss_scan_count(search = 1list("N/A"))

# A tibble: 3 x 2

Variable n
<chr> <int>
1 score 0
2 grade 1
3 place 0

This returns a dataframe with two columns: “Variable” - the variables in the chaos data frame,
and “n”, the number of times that string appears in each variable. Here, we see that “N/A”
appears once in the grade variable, and never in the score or place variables

The miss_scan_count function accepts multiple arguments in the search, so you can look for
all the strangely recorded missing values you like! Here we see that when searching for capital
“N/A” and “N/a”, there are two hits for the variable, grade (and still 0 for both score and
place).

chaos %>%

miss_scan_count(search = list("N/A",

IIN/aIl))

# A tibble: 3 x 2

Variable n
<chr> <int>
1 score 0
2 grade 2
3 place 0

The naniar package also contains two helpful datasets to explore missingness, common_na_numbers
and common_na_strings:

common_na_numbers

[1] -9 -99 -999 -9999 9999 66 7 88
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common_na_strings

[1] "NA" "N A" IIN/AII "#N/A" "NA " " NA" "N /All "N / A"
[9] "N / A" "N / A" "pa" "n a" un/an "na " " na" "n /an
[17] "n / a" " g / a" "n / a " "NULL" "null" nn n\\?u ||\\*||
[25] n\\.u

These can be put inside of miss_scan_count and we can see we’ve got even more matches!

chaos %>%
miss_scan_count(search = common_na_numbers)

# A tibble: 3 x 2

Variable n
<chr> <int>
1 score 2
2 grade 0
3 place 3

chaos %>
miss_scan_count(search = common_na_strings)

# A tibble: 3 x 2

Variable n
<chr> <int>
1 score 9
2 grade 8
3 place 9

You can also look for both:

chaos %>%
miss_scan_count(search = c(common_na_numbers,
common_na_strings))

# A tibble: 3 x 2
Variable n
<chr> <int>
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1 score 9

2 grade

[00]

3 place 9

Note that you do still need to carefully explore the data and metadata to get an idea of how
missing values were recorded so that you don’t miss an obscure missing record. Also consider
that some o these values might have other meanings - finding a match of the numbers in
common_na_numbers might not mean they all match missing values, since, for example, you

could conceivably have values -99.

An Aside on \\

Note that in common_na_strings, there are some \\ for values such as . and * and
?. This is because under the hood, miss_scan_count uses a thing called “regular
expressions” to search for characters in the data. Briefly, regular expressions allow
you to find and extract parts of text from collections of text. For example, the reg-
ular expression “*.csv$” means “find words that contain anything up until”.csv”,
and “csv” is also the last thing in the word. So these values, *, ., and 7 all have
special meaning in regular expressions. We use \\ to “escape” the regular expres-
sion. It’s our way of saying, “No really, just look for”*“ or””, or “?”. Regular
expressions are a really powerful tool, but can take some (sometimes a lot) of time
to get your head around. Two places that provide a nice way to test out regular
expressions is https://regex101.com/ and https://regexr.com/.

7.1.2 Replacing missing values with NA

Once you've explored and searched for missing values stored as something other than NA, you
can replace them with NA using the replace_with_na() function. For example, in the chaos
dataset we can replace “N/A” and “N/a” entries that appear in the grade variable as follows:

chaos %>%

replace_with_na(replace = list(grade = c("N/A", "N/a")))

# A tibble: 9 x 3

O O WN -

score grade place
<int> <chr> <chr>
3  <NA> -99
-99 "E" o7
4 "missing" 95
-99 "na" 92
7 "n/a" -98
io " missing
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7 12 . 88
8 16 <NA>
9 9 <NA> 86

The above code can be read as follows:

Start with the chaos data, then within the variable grade replace any existing
values of “N/A” and “N/a” with NA.

We can see this has replaced some of the missing values, but note that it only replaces the ezact
specified strings (“N/A” and “N/a”) - even slight variations (“na” and “n/a”) still exist.

We can even use common_na_strings in replace_with_na - but be warned! This should only
be done if you really, truly, 100% for sure know that all the values in common_na_strings
should be missing values in your data. Do not apply this without careful thought! You have
been warned!

chaos %>%
replace_with_na(replace = list(grade = common_na_strings))

# A tibble: 9 x 3

score grade place
<int> <chr> <chr>
1 3 <NA> -99
2 -99 "E" 97
3 4 "missing" 95
4 -99 <NA> 92
5 7 <NA> -98
6 o " missing
7 12 . 88
8 16 <NA>
9 9 "N/a" 86
UP TO HERE

7.1.3 Useful variants of replace_with_na

The replace_with_na function can be repetitive if you need to use it across many variables,
for many different values. Or, for more complex cases where you might only want to replace
values less than -1, or only treat character columns. To account for these situations, naniar
borrows from dplyr’s scoped variants and extends replace_with_na to create three useful
functions:
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e replace_with_na_all(): operates on all variables.

e replace_with_na_at(): operates on a subset of selected variables

o replace_with_na_if (): operates on a subset of variables that fulfil a condition (e.g. only
on numeric variables)

Example: replace_with_na_all

The scoped variants of replace_with_na follow a specific syntax. You provide a condition
argument, and pass it a special function that starts with the squiggly line, tilde, ~, and when
referring to a variable, you use .x. For example, if we want to replace all cases of -99 in a
dataset, we use replace_with_na_all, and write:

chaos %>%
replace_with_na_all(condition = ~.x == -99)

# A tibble: 9 x 3

score grade place
<int> <chr> <chr>
1 3 "N/A" <NA>
2 NA "E" o7
3 4 "missing" 95
4 NA "na" 92
5 7 "n/a" -98
6 io " missing
7 12 . 88
8 16 <NA>
9 9 "N/a" 86

We can read the above code as:

start with chaos, THEN replace_with_na_all where any variable (~.x) is equal
to -99.

Extending this a bit further, we can replace values “N/A”, “missing”, or “na” with NA across
all variables in chaos with the following:

chaos %>

replace_with_na_all(condition = ~.x %in% c("N/A", "missing", "na"))

# A tibble: 9 x 3
score grade place
<int> <chr> <chr>
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1 3 <NA> -99
2 -99 "E" 97

3 4 <NA> 95

4 -99 <NA> 92

5 7 "n/a" -98
6 0 " <NA>
7 12 " 88

8 16 <NA> .

9 9 "N/a" 86

We can read the code above as:

Start with chaos data, THEN replace_with_na_all across all variables where
the existing value is “N/A”, “missing”, or “na”

Example: replace_with_na_at

To select specific columns to apply replace_with_na to slected variables by name, use the
scoped variant replace_with_na_at. For example, to only replace values with NA in the place
column of chaos, we can use:

chaos %>%
replace_with_na_at(
.vars = "place",

condition = ~.x %in% c("missing", "na", ".")

)

# A tibble: 9 x 3

score grade place
<int> <chr> <chr>
1 3 "N/A" -99
2 -99 "E" o7
3 4 "missing" 95
4 -99 "na" 92
5 7 "n/a" -98
6 0 " " <NA>
7 12 "." 88
8 16 <NA> <NA>
9 9 "N/a" 86

We can see that those recorded missings have been replaced with NA only in the place vari-
able.
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Example: replace_with_na_if

The replace_with_na_if function allows us to replace values with NA in columns that satisfy
a condition (e.g. if I only want to replace with NA in a character column).

For example, to replace values with NA in character columns in chaos, we can use the following
code:

chaos %>%
replace_with_na_if(
.predicate = is.character,
condition = ~.x %in% c("N/A", "N/a", "na", "n/a", ".", "", "missing")

)

# A tibble: 9 x 3
score grade place
<int> <chr> <chr>

1 3 <NA> -99
2 -99 "E" 97

3 4 <NA> 95

4 -99 <NA> 92

5 7 <NA> -98
6 io " <NA>
7 12 <NA> 88

8 16 <NA> <NA>
9 9 <NA> 86

Note that all of those varied records of missingness in the two character columns (grade and
place) have been replaced with NA.

It is worthwhile to think about which records were not replaced with NA in the example above.
Perhaps these were incorrectly recorded, or indicate a missing value?

Overall, the scoped variants of replace_with_na provide more control over which values in
the data are replaced by NA.

7.1.4 Alternatives to replace_with_na

The replace_with_na function, and scoped variants, provide a high degree of control over
what you replace, and over which variables. However, they can sometimes be a bit slow for
larger datasets. If you do not need that level of control, and would like to have a bit more
speed, several options exist to replace values with NA.
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7.1.4.1 dplyr::na_if

If you need to replace a single non-NA entry (e.g. “N/A”) throughout the dataset, you can use
the dplyr: :na_if function. Note that it only works to replace a single value, like “N/A”, and
cannot handle vectors of multiple values (e.g. it breaks with c("N/A", "na", ".")).

The following code replaces all “missing” occurrences in chaos with NA:

chaos 7>
na_if ("missing")

# A tibble: 9 x 3
score grade place
<int> <chr> <chr>

1 3 "N/A" -99
2 -99 "E" 97

3 4 <NA> 95

4 -99 "ma" 092

5 7 "n/a" -98
6 io " " <NA>
7 12 . 88

8 16 <NA> .

9 9 "N/a" 86

You can also use na_if with across, but not to same flexibility as replace_with_na:

# in across
chaos %>%
mutate (
across(
.cols = everything(Q),
.fns = ~na_if (., -99)
)

chaos %>%
mutate (
across(
.cols = "place",
# note that you cannot specify multiple values to replace in “place”
.fns = ~na_if(., c("missing")

)
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chaos %>%
mutate (
across (
.cols = where(is.character),
# note again that you cannot specify multiple values to replace with NA
.fns = ~na_if(., "N/A")
)

7.1.4.2 Argument na = in readr

Similarly, you can replace a specified non-NA throughout the dataset when reading the dataset
into R using the optional na = argument in readr.

For example, if we were reading in a theoretical .csv file in our current folder called ‘hiking’

that contains missing values recorded as “no data” throughout, we could read it in and replace
all “no data” with NA as follows:

df <- read_csv("hiking.csv", na = "no data")

One workflow here might be to use the tools in naniar, miss_scan_count(search =
list("N/A")) and perhaps replace_with_na to understand and check your missing value
replacements, then put all of the values that are missing you have found and confirmed into
the na argument of read_csv.

An aside: dplyr and across

When naniar was written, dplyr’s scoped variants were a very new feature, but
since writing, this feature has become superceded by the new across feature. We
are still working through some bugs in naniar to try and make across work
with replace_with_na. Although it is possible to use na_if to some extent with
across, because it only accepts single values, it does not really work in the same
was as replace_with_na. The idea with replace_with_na and across would be
for it to look something like the following instead:

replace_with_na_all(
data = chaos,
condition = ~.x == -99

)
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# in across
chaos %>%
mutate (
across(
.cols = everything(),
.fns = replace_with_na,

condition = ~.x == -99
)
)
replace_with_na_at(
chaos
.vars = "place",
condition = ~.x %in% c("missing", "mna", ".")
)
chaos %>%
mutate (
across(
.cols = "place",
.fns = replace_with_na,
condition = ~.x %in’% c("missing", "na", ".")
)
)
replace_with_na_if(
data = chaos,
.predicate = is.character,
condition = ~.x %in% c("N/A", "N/a", "na", "n/a", ".", "",
)
chaos %>%
mutate (
across(
.cols = where(is.character),
.fns = replace_with_na,
condition = ~.x %in% c("N/A", "N/a", "na", "n/a", ".",

)
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8 Missing, missing data: explicit and implicit
missings

library(naniar)
library(tidyr)

So far, we have learned how to apply tools and strategies to explore, search for and replace
missing values. We know how to search for and replace those recorded missing values mas-
querading as real values, including sneaky strings like “N/A”, “missing”, and “no record”. But
what if an entire row is omitted? Then there is no record of those missing values in our data,
but they are still missing. So far, we have only explored missing values that exist in our data.
Sounds strange, perhaps? Well these values that exist in our data as a recorded missing value,
are called explicit missing values. They are in fact, missing missing values, more often called
implicit missings.

More briefly: missing values in a dataset can either be explicit, meaning they are missing but
recorded, or implicit, meaning that their presence is only implied based on other information
(e.g. existing factor levels) in the data.

8.0.1 Explore implicit missings

Imagine we have tetris scores for three friends: Robin, Sam, and Blair. Their scores are
recorded in the morning, afternoon, and evening, as shown below:

set.seed(2020-07-08)
tetris <- data.frame(
name = c(rep("robin", 3),
rep("sam", 2),
rep("blair",3)),
c("morning", "afternoon", "evening",

time
"morning", "afternoon",
"morning", "afternoon", "evening"),
value = c(floor(runif (3, OL, 1000L)),
floor(runif (2, 20L, 1000L)),
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floor(runif (3, 850L, 1000L)))

knitr::kable(tetris)

name time value
robin morning 832
robin afternoon 86
robin  evening 897
sam  morning 93
sam  afternoon 688
blair  morning 952
blair  afternoon 954
blair  evening 955

Do you notice something different about one of the friends’ records? Sam’s score is recorded
for morning and afternoon, but their evening score is missing entirely. Sam’s evening
score is not recorded as missing - the evening record is not even there! This becomes clearer if
we spread out the data, so that we have one column for afternoon, evening, and morning,.

tetris %>%
pivot_wider(id_cols = name,
names_from = time,
values from = value) %>%
knitr::kable()

name morning afternoon evening

robin 832 86 897
sam 93 688 NA
blair 952 954 955

Notice how there is now an NA indicated for Sam’s evening score? The missing value we see
here did not show up before - in long format, it was actually a missing missing value!

In this example, Sam’s evening score is an implicit missing value.
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8.0.2 Making implicit missings explicit
It can sometimes be useful to make implicit missing values explicit (even in long format), which
we can do using the complete function from tidyr. With the tetris data, that looks like
this:

tetris %>%

tidyr::complete(name, time)

# A tibble: 9 x 3

name time value

<chr> <chr> <dbl>
1 blair afternoon 954
2 blair evening 955
3 blair morning 952
4 robin afternoon 86
5 robin evening 897
6 robin morning 832
7 sam afternoon 688
8 sam  evening NA
9 sam morning 93

We see that now an observation has been created for Sam’s evening score, with value recored
as NA.

What is the complete function actually doing? Based on the specified variables name and time,
the function has identified expected combinations of those two variables across all groups (i.e.,
because Blair and Robin have an evening score, we expect that Sam should too) - and a
new observation is created to make Sam’s implicit missing evening score an explicit one that
appears in the data.

Whereas the implicit missing for Sam’s evening score would not be detected using the tools to
count, summarize and visualize NA values we have learned so far, when converted to an explicit
missing using complete, it would be detected because it has been populated with NA.

8.0.3 Handling explicitly missing values

Sometimes missing data is entered to help make a dataset more readable. For example, imagine
if we had the following structure for our tetris data:
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tetris_empty <- tibble::tibble(
name = c("robin", NA, NA,
"sam", NA, NA,
"blair",NA, NA),

time = c("morning", "afternoon", "evening",
"morning", "afternoon", "evening",
"morning", "afternoon", "evening"),

value = c(floor(runif (3, OL, 1000L)),
floor (runif (3, 20L, 1000L)),
floor (runif (3, 850L, 1000L)))

knitr::kable(tetris_empty)

name time value
robin  morning 340
NA afternoon 376
NA evening 527
sam  morning 594
NA afternoon 399
NA evening 26
blair ~ morning 939
NA afternoon 974
NA evening 974

Sometimes this kind of format is used to make something more pleasant to read in a spreadsheet.
Now, we happen to know something about the data structure here - that there are three records
per person, at morning, afternoon, and evening. What we want to do is fill these missing values
by populating each NA with the player’s name that comes before it. The £ill function from
tidyr does just that: each NA in a variable is populated with the most recent non-NA value

before (i.e., above) it.

tetris_empty %>%
tidyr::fill(name) %>%
knitr::kable()

name time value

robin  morning 340
robin afternoon 376
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name time value

robin evening 527
sam  morning 594
sam  afternoon 399
sam  evening 26
blair  morning 939
blair  afternoon 974
blair  evening 974

This method of filling in missing values is referred to as “last observation carried forward” and
is sometimes abbreviated as “locf”.

Beware: this requires that your data are carefully organized before using £111! The
£i11 function does NOT predict what the entry should be based on other variable
values or factor levels; it simply populates each missing value with the most recent
non-missing value for that variable. Be very careful with this method to populate
missings, and understand that it is only useful in unique cases and not a generally
suggested option to replace missing values.
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Part IV

Representing Missing Data
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9 Representing Missing Data

We’ve covered how to create summaries and visualize missing values. But how do we link these
summaries of missingness back to values in the data? This chapter explores two special data
structures to facilitate working with missing data:

1. The Shadow Matrix
2. Nabular data

9.1 Motivation

Let’s imagine that we have some census data that contains two columns: income, and educa-
tion.

Rows: 200 Columns: 2

-- Column specification —-—-—————————————————— -
Delimiter: ","

chr (1): education

dbl (1): income

i Use “spec()” to retrieve the full column specification for this data.
i Specify the column types or set “show_col_types = FALSE ™ to quiet this message.

income education

73.13497 NA
66.78344 high_school
47.18483 NA
31.19808 high_ school
64.41645 NA
51.80495 NA

There are some missing values in education. If we look at the distribution of income, we see
that it looks like most of the values are around 70-80 thousand dollars a year.
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ggplot(census,
aes(x = income)) +
geom_density()
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0 50 100 150
income

But if we create a new variable that tells us if education is missing, education_NA, using
if_else. This will contain the value “NA” when education is missing, and “!NA” when
education is not missing (! meaning NOT).

census_na <- census %>%
mutate (education NA = if_else(condition = is.na(education),
true = "NA",
false = "INA"))

census_na

# A tibble: 200 x 3
income education education_NA

<dbl> <chr> <chr>
1 73.1 <NA> NA
2 66.8 high_school !NA
3  47.2 <NA> NA
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high_school !NA

<NA> NA
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<NA> NA
high_school !NA
<NA> NA
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Then this new variable education_NA allows us to explore how income changes depending on
whether or not education is missing.

ggplot (census_na,
aes(x = income,

fill = education_NA)) +

geom_density(alpha = 0.5)

density

0.015-
ion NA
0.0104 education_|
. INA
] e
0.005 -
0.000 -
0 50 100 150
income

We can see that indeed, your value of income does change whether your education value is
missing or not.

Plots like this are really useful to explore missingness in a more principled way. naniar
provides special data structures that facilitate this in a powerful way. This chapter introduces
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these special data structures, the shadow matrix, and nabular data, and demonstrates how
their use in analysis.

9.2 The shadow matrix

We previously showed how the new variable, education_NA can be used to explore missing
data. This variable can be thought of as the “shadow” of education:

census_na %>/
select (education,
education NA) %>%
slice(1:10) %>%
knitr::kable()

education education  NA
NA NA
high_school INA

NA NA
high_school INA

NA NA

NA NA

NA NA
high_school INA

NA NA

high school INA

Creating these shadow variables is handy! But doing it for each variable, each time you want
to explore missingness adds a lot of extra work. We can instead shift our focus to look at what
if we turned all of the variables into shadow versions of themselves. We call this a “Shadow
matrix”. You can convert your data to a shadow matrix using as_shadow ().

as_shadow(census)

# A tibble: 200 x 2
income_NA education_NA

<fct> <fct>
1 INA NA
2 INA INA
3 INA NA
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4 INA INA

5 INA NA

6 !'NA NA

7 INA NA

8 INA INA

9 INA NA

10 INA INA
# ... with 190 more rows

While you can get something similar by using is.na()

is.na(census) %>% head()

income education

[1,] FALSE TRUE
[2,] FALSE FALSE
[3,] FALSE TRUE
[4,] FALSE FALSE
[5,] FALSE TRUE
[6,] FALSE TRUE

This is has some shortcomings - the first being that it is now actually a matrix, not a
dataframe:

is.na(census) %>% head() %>% class()

[1] "matrix" "array"

and the second being that it is not entirely clear what TRUE means! Does it mean TRUE
missing or TRUE, present? The shadow matrix from as_shadow returns a dataframe, and
contains two features that make it easier to use in a data analysis:

1. Coordinated names: Variables in the shadow matrix gain the same name as in the data,
with the suffix “__NA” This makes the variables missingness clear to refer to. It also
indicates that we shift our thinking from “what is this variable’s values” to “what is the
missingness of this variable”.

2. Clear values. The values are either !NA - “not missing”, or NA - “missing”. This is
clearer than 1s and Os for missing/not missing

The shadow matrix is most useful when combined with the data, which we call nabular data,
which we now discuss.
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9.3 Creating nabular data

To get the most out of the shadow matrix, it needs to be attached, column-wise, to the
data. Putting the data in this form is referred to as nabular data - so called because it is a
portmanteau or “NA”, and “Tabular”. You can create this data with nabular():

nabular (census)

# A tibble: 200 x 4
income education income_NA education_NA

<dbl> <chr> <fct> <fct>
1 73.1 <NA> INA NA
2 66.8 high_school INA INA
3  47.2 <NA> INA NA
4 31.2 high_school !NA INA
5 64.4 <NA> INA NA
6 51.8 <NA> INA NA
7 52.6 <NA> INA NA
8 17.5 high_school !NA INA
9 61.2 <NA> INA NA
10 21.2 high_school !NA INA
# ... with 190 more rows

So here we have the income values and education, and then their shadow representations -
income_NA, and education_NA.

An aside: data storage and nabular data

It’s worth mentioning that using nabular data does increase the size of your data:

lobstr::obj_size(census)

6.38 kB

lobstr::obj_size(nabular(census))

7.70 kB

lobstr::obj_size(riskfactors)
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49.23 kB

lobstr::obj_size(nabular(riskfactors))

99.99 kB

if size is an issue for you, one option could be to down sample your data. The
philosophy behind exploring your data with naniar is to get a handle on the general
issues of missing data first. Although speed is important, we want to make sure
that these techniques work well before making them super fast. In the future we
will hopefully explore some techniques for making the size of nabular data smaller.

One way to reduce nabular data size is to only add shadow columns for values
that are missing, using the only_miss argument in nabular:

lobstr::obj_size(riskfactors)

49.23 kB

lobstr::obj_size(nabular(riskfactors))

99.99 kB

nabular(riskfactors, only_miss = TRUE)

# A tibble: 245 x 58

state sex age weight_1bs height_inch  bmi marital pregnant children

<fct> <fct> <int> <int> <int> <dbl> <fct> <fct> <int>
1 26 Female 49 190 64 32.7 Married <NA> 0
2 40 Female 48 170 68 25.9 Divorced <NA> 0
3 72 Female 55 163 64 28.0 Married <NA> 0
4 42 Male 42 230 74 29.6 Married <NA> 1
5 32 Female 66 135 62 24.7 Widowed <NA> 0
6 19 Male 66 165 70 23.7 Married <NA> 0
7 45 Male 37 150 68 22.9 Married <NA> 3
8 56 Female 62 170 70 24.4 NeverMarri~ <NA> 0
9 18 Male 38 146 70 21.0 Married <NA> 2
10 8 Female 42 260 73 34.4 Separated No 3
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# . with 235 more rows, and 49 more variables: education <fct>,

# employment <fct>, income <fct>, veteran <fct>, hispanic <fct>,

#  health_general <fct>, health_physical <int>, health_mental <int>,

# health_poor <int>, health_cover <fct>, provide_care <fct>,

# activity_limited <fct>, drink_any <fct>, drink_days <int>,

# drink_average <int>, smoke_100 <fct>, smoke_days <fct>, smoke_stop <fct>,

# smoke_last <fct>, diet_fruit <int>, diet_salad <int>,
lobstr::obj_size(nabular(riskfactors, only_miss = TRUE))

85.24 kB

9.4 Data summaries with nabular data

Now that you can create nabular data, let’s use it to do something useful, like calculate
summary statistics based on the missingness of something else. We take the airquality data,
then use nabular () to turn the data into nabular data.

nabular(airquality)

# A tibble: 153 x 12
Ozone Solar.R Wind Temp Month Day Ozone_NA Solar.R_NA Wind_NA Temp_NA

<int> <int> <dbl> <int> <int> <int> <fct> <fct> <fct> <fct>

1 41 190 7.4 67 5 1 INA INA INA INA

2 36 118 8 72 5 2 INA INA INA INA

3 12 149 12.6 74 5 3 INA INA INA INA

4 18 313 11.5 62 5 4 INA INA INA INA

5 NA NA 14.3 56 5 5 NA NA INA INA

6 28 NA 14.9 66 5 6 !NA NA INA INA

7 23 299 8.6 65 5 7 INA INA INA INA

8 19 99 13.8 59 5 8 INA INA INA INA

9 8 19 20.1 61 5 9 INA INA INA INA
10 NA 194 8.6 69 5 10 NA INA INA INA
# ... with 143 more rows, and 2 more variables: Month_NA <fct>, Day_NA <fct>

Note that we have the airquality variables, Ozone, Solar.R, etc., and the shadow matrix
variables, Ozone_NA, Solar.R_NA and so on.

We can perform some summaries on the data using group_by and summarise() to calculate
the mean of Wind speed, according to the missingness of Ozone:
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airquality %>%
nabular() %>%
group_by(0Ozone_NA) %>%
summarise(mean = mean(Wind))

# A tibble: 2 x 2
Ozone_NA mean
<fct> <dbl>

1 !'NA 9.86

2 NA 10.3

We see that the mean values of Wind are relatively similar, but slightly higher when Ozone is
missing, than when Ozone is not missing.
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10 Exploring conditional missings with ggplot

library(tidyverse)
-- Attaching packages ---————-""""""""""""""""""""""————————- tidyverse 1.3.1 —-
v ggplot2 3.3.6 v purrr 0.3.4
v tibble 3.1.7 v dplyr 1.0.9
v tidyr 1.2.0 v stringr 1.4.0
v readr 2.1.2 v forcats 0.5.1
—-- Conflicts ————————————————————— oo tidyverse_conflicts() --

x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()

library(naniar)

Now that we’ve explored some ways to summarise data using nabular data, we are going to
explore how you can use nabular data to explore how variables vary as other variables go
missing. We’ll demonstrate this using ggplot, showing how to visualise densities, boxplots,
and some ways of creating multiple plots, for each type of missingness.

10.1 Visualizing missings using densities

To begin, we can look at the distribution of temperature using ggplot, placing Temp on the X
axis, and then using geom_density () to visualise temperature as a density, or a distribution.

ggplot(airquality,

aes(x = Temp)) +
geom_density ()
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To explore how temperature changes when ozone is missing, we create the nabular data with
nabular (), and then add in our aesthetics, colour = Ozone_NA.

airquality %>%
nabular() %>%

ggplot(aes(x = Temp,
color = Ozone NA)) +

geom_density ()
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This now splits the density into two densities, one for temperature when ozone is present, and
one for temperature when ozone is absent. This shows us that the values of temperature don’t

change much when ozone is present or absent.

10.2 Visualizing missings using boxplots

Similarly, you can use boxplots to explore missing data, by putting the missingness that you
would like to explore by on the x axis (0zone_NA), and temperature on the y axis, then using

geom_boxplot ().

airquality %>%
nabular() %>%
ggplot (aes(x = Ozone_NA,
y = Temp)) +
geom_boxplot ()
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What can we learn from this? The values of temperature are similar when ozone is missing
versus not missing. However, there is generally less variation for temperature when ozone is
missing, but there are also some temperature outliers.

10.3 Visualizing missings using facets

We can visualise two densities for temperature according to the missingness of ozone. This
is similar to the previous density visualisation, except the densities are not overlaid, and are
faceted - they are in separate plots.

A similar visualisation to the previous visualisation of densities can be made using facets. Here,
we use nabular data to create a density plot, using facet_wrap(~0zone_NA).

airquality %>%
nabular() %>%
ggplot(aes(x = Temp)) +
geom_density() +
facet_wrap(~0zone_NA)
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Splitting by facet can be useful if you want to compare different types of visualisations.

You can look at two scatterplots, facetting by the missingness of Ozone using 0zone_NA, for
the values temperature and wind.

airquality %>%
nabular() %>%
ggplot (aes(x
y
geom_point() +
facet_wrap(~0zone_NA)

Temp,
Wind)) +

87



INA

NA
°
20 - L
°
° ° - . ° o
15- ° L) ° ) °
we o ° °
° ° ) ° )
° °
- o e ° °
c o0 o o0 o e e o
; A ° ° °
10- eee e o e ° ° °
° o o °
° o o ° e o o °
o o o e o ° o0
® e 0% M, °
° (X X e
° °
5- o« & % °
o o
°
%
60 fO éO dO

70 80 90
Temp

Note there are fewer wind and temperature scores when ozone is missing, and that these tend

to occur for temperatures over 70 and wind speeds over 5. Overall, the values of wind and
temperature when ozone is missing seem similar to when ozone is present.

10.4 Visualizing missings using colour
they are missing.

Equivalently to the previous facetted plot, you can visualise the points according to whether
airquality %>%

nabular() %>%

ggplot(aes(x = Temp,
y = Wind,
color

Ozone_NA)) +
geom_point ()
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This overlays the points rather than creating separate plots. This can sometimes help make
comparisons easier, although this is not always the case. In the example above I cannot see
any clear pattern in these points.

10.5 Adding layers of missingness

A useful advantage to using facet to split by missings is that this allows you to look at another
condition of missingness. For example, create two plots by the missingness of solar radiation,
and then colour the densities by missingness of ozone.

airquality %>%
nabular() %>%
ggplot(aes(x = Temp,
color = Ozone_NA)) +
geom_density() +
facet_wrap(~Solar.R_NA)
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This shows us that there isn’t much difference in temperature when solar radiation isn’t missing,
but when solar radiation is missing, the temperatures are quite low!

Now that we’ve covered some methods for visually exploring missing data using nabular data
and ggplot2, it’s time to practice using this on some other data.
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11 Visualizing missingness across two variables

We have previously discussed the use of nabular data, a way to represent missing data along-
side the data itself. This data structure underpins how naniar performs data visualisation
and summaries. This chapter discusses how to use the nabular data structure with data
visualisation to further explore why data could be missing, looking across two variables.

If you want to explore two variables in a dataset, a scatterplot is a natural graphic to show.
Let’s explore ozone and solar radiation like so:

ggplot(airquality,
aes(x = Ozone,
y = Solar.R)) +
geom_point ()

Warning: Removed 42 rows containing missing values (geom_point).
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However, note the warning message:

Warning message:
Removed 42 rows containing
missing values (geom_point).

What? What does this mean? Why would ggplot do this? Well, it turns out that it’s really nice

that ggplot2 provides this warning, since removing missing values is often done in modelling
and other graphics without you being made aware of it.

So, how do you visualise those missing values? How does visualising missingness make sense?
This is the focus of this chapter.

11.0.1 The problem of visualizing missing data in two dimensions

ggplot (airquality,
aes(x = Ozone,
y = Solar.R)) +
geom_point ()

Warning: Removed 42 rows containing missing values (geom_point).
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The problem with visualising a scatterplot when the data has missing values is that it removes
any observations - entire rows - that have missing values. ggplot2 is actually very nice here
and gives a warning that missing values are being dropped. The same cannot be said of other
all functions in R!

11.0.2 Introduction to geom_miss_point ()

gg_miss_point <- ggplot(airquality,
aes(x = Ozone,
y = Solar.R)) +
geom_miss_point ()

To explore the missings in a scatter plot, we can use geom_miss_point (). geom_miss_point ()
visualises the missing values by placing them in the margins.

airquality_rect <- airquality %>%
as_tibble() %»>%
impute_below_at(.vars = c("Ozone", "Solar.R")) %>%
summarise(xmin = min(0Ozone) + min(Ozone)*0.1,
xmax = 0,
ymin = O,
ymax = max(Solar.R) + 10)

gg_miss_point +
geom_rect(data = airquality_rect,
inherit.aes=FALSE,
aes(xmin=xmin, xmax=xmax,ymin=ymin,ymax=ymax),
alpha = 0.4,
fill = "orange")
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On the left in the highlighted orange section red we can see the values of solar radiation when
ozone is missing. This shows us that the values of solar radiation are reasonably uniform.

airquality_rect <- airquality %>%
as_tibble() %>%
impute_below_at(.vars = c("Ozone", "Solar.R")) %>%
summarise(xmin = O,
xmax = max(0zone),
ymin = min(Solar.R) - 10,
ymax = 0)

gg_miss_point +
geom_rect(data = airquality_rect,
inherit.aes=FALSE,
aes(xmin=xmin, xmax=xmax,ymin=ymin,ymax=ymax),
alpha = 0.4,
fill = "orange")
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The values of ozone when Solar.R is missing are shown in red on the bottom, this shows us
that the missing values tend to occur at lower values of ozone.

airquality_rect <- airquality %>%
as_tibble() %>%

impute_below_at(.vars = c("Ozone", "Solar.R")) %>%
summarise (xmin = min(Ozone) - 10,

xmax = 0,

ymin = min(Solar.R) - 10,

ymax = 0)

gg_miss_point +
geom_rect(data = airquality_rect,
inherit.aes=FALSE,
aes(xmin=xmin, xmax=xmax,ymin=ymin,ymax=ymax),
alpha = 0.4,
fill = "orange")
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In the bottom left we show cases where there are missings in both ozone and solar radiation.
To explain how and why this visualisation works, we are going to take a brief moment to
unpack the data transformation that occurs here.

11.0.2.1 Aside: How geom_miss_point() works

geom_miss_point performs a transformation on the data and actually imputes (fills in, re-
places) the values that are missing. Under the hood, the data is represented like so, for the
ozone data:

Ozone Ogzone_ shift Ozone NA

41 41.00000 INA
36 36.00000 INA
12 12.00000 INA
18 18.00000 NA
NA -19.72321 NA

28 28.00000 !NA

Notice that we have our nabular data here - with Ozone and Ozone_NA. We also have a new
column, Ozone_shift. This contains the imputed data. This data is imputed 10% below
the minimum value of ozone. To keep track of which values were imputed, we can use
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the Ozone_NA column! We’'ll come back to this idea of tracking missing values in the next
chapter.

11.0.3 Exploring missingness using facets

Because geom_miss_point () is a defined ggplot2 geometry, it behaves like any other ggplot.
This means, you can use ggplot features like facets, to further explore your missing data. For
example, you can facet by Month, to explore how the missingness changes over month:

ggplot (airquality,
aes(x = Wind,
y = Ozone)) +

geom_miss_point() +
facet_wrap(~Month)
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You can even use nabular data from the previous lesson, and explore the missingness by
another variable being missing. For example, you can explore how the missingness changes
when solar radiation is missing.
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airquality %>%
nabular() %>%
ggplot(aes(x = Wind,
y = Ozone)) +
geom_miss_point() +
facet_wrap(~Solar.R_NA)
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Part V

Mechanisms of Missingness
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12 Mechanisms of missingness

library(naniar)
library(readr)
library(dplyr)
library(mice)
library(here)
library(tidyverse)

Once we have explored and cleaned up our messy missing data so that they are consistently
stored as NA throughout, we need to dig further into missingness to responsibly decide on next
steps. However, before further analysis, we need to ask and answer questions, such as:

o How should we deal with missing values (e.g. should we delete cases, or impute values)?
e How might that decision impact our analyses and outcomes?

To answer these questions, we need to understand and explore mechanisms of missing-
ness.

Mechanisms of missingness answer the question “ Why are values missing?”. For example, it
could be that as your income increases, you might be less likely to report how much you paid in
tax on a survey. So increased income leads to increasing missingness. Answering this question
with certainty is really hard, and sometimes, impossible. We need to investigate missing
data dependence, however, to inform decisions about dealing with missing values.

In this chapter, we introduce three mechanisms of missingness:

e MCAR - Missing Completely at Random
¢ MAR - Missing At Random
e MNAR - Missing Not At Random

Then, we explore and compare how those mechanisms of missingness might appear in miss-
ing data exploration using naniar functions for data visualization introduced in previous
sections.
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12.1 Missing completely at random (MCAR)

Missing completely at random, or MCAR, is missingness that has no association with any
data you have observed, or not observed. In other words, the cause of the missingness can be
considered truly random, and unrelated to observed or unobserved variables meaningful to the
data and your analyses.

For example, imagine you are a tornado researcher. You are determined to deploy small devices
into a tornado that, when suspended in the tornado, will record windspeeds and dynamics (yes
- this is the plot of the classic film Twister starring Bill Paxton). One day while driving to
try to launch your devices, your car runs out of gas, and you are unable to obtain windspeed
readings. Those unrecorded windspeeds show up as NA in the dataset for that tornado. In this
case, the cause of the missingness (running out of gas) is unrelated to tornado windspeeds - it
can be considered a truly “random” cause of missingness, or missing completely at random

(MCAR).

An important distinction: MCAR does not mean there is “no reason” for missingness.
In this example, windspeed is missing for this tornado because you ran out of gas. It is still
MCAR because the cause of missingness is unrelated to tornado windspeed in a meaningful
way.

Critical thinking: Imagining that you are the tornado researcher in the example above,
what other hypothetical causes may result in tornado windspeeds being missing completely at
random (MCAR)?

12.1.1 How might MCAR appear in data?

A hypothetical example of how we might want MCAR to appear for the max_windspeed
variable is shown below:

date severity ave_temp_daily_precip_ mmax_ windspeed_nafss

7/22/20 ef2 84 94 124 NA

8/9/20 ef3 79 52 130 NA

6/15/20 efl 73 71 109 NA

9/18/20 efl 86 43 94 NA

10/5/19 ef0 71 18 75 NA

10/15/19 efl 90 57 NA Ran out of gas; could not
deploy

9/8/19  ef0 82 22 81 NA

8/17/18 efd 80 102 196 NA

8/26/18 efl 73 53 NA Team unavailable; could not
deploy

9/2/17  ef2 78 39 114 NA
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date severity ave_temp_daily_precip__mmax_ windspeed_nafss

9/15/16 ef5 85 164 208 NA

In the dataset above, we see two missing values (NA) in the max_windspeed column. For each,
the comments in the notes column describe reasons for missingness that are unrelated to
tornado windspeeds, and can thus be considered MCAR.

Aside on note keeping

The only reason we would definitively know missingness in windspeed is MCAR is
due to the notes variable included. Keep this in mind when collecting your own
data: taking contemporaneous notes about data collection, obstacles, etc. can be
very useful when trying to determine why values are missing.

More often, we do not have notes explaining each missing value. If that is the case, how might
we expect MCAR to appear in a larger dataset? Here, we again use a theoretical dataset,
twister, for tornadoes to obviate how missing mechanisms might appear.

Warning: “gather_()~ was deprecated in tidyr 1.2.0.

Please use “gather()” instead.

This warning is displayed once every 8 hours.

Call “lifecycle::last_lifecycle_warnings()”~ to see where this warning was generated.
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12.1.1.1 MCAR Implications

We can deal with missing values in a number of ways, but here we focus on two broad ap-
proaches: delete observations (rows) containing missing values for variables included in analy-
ses, or impute (manufacture) data to “fill in” the missing values with reasonable values.

If missing values are MCAR, deleting observations containing missing values will not bias re-
sults, but reduces sample size (sometimes substantially). We call deleting entire rows, listwise
deletion, if you decide to use listwise deletion, make sure to check how many ob-
servations are included in your analysis. Ideally do not delete unless there is less than
5% data loss. But really, you should be imputing your data always.

12.2 Missing at random (MAR)

Missing at random (MAR) occurs when missingness depends on data you have observed, but
not on unobserved data.

Returning to our Twister tornado example: Imagine that you are again driving to release your
wind speed devices into a tornado. Due to heavy rainfall, however (for which you do have
data), several river crossings are flooded and you are unable to safely approach the tornado.
Therefore, missingness in wind speed is due to another recorded variable in the data (rainfall,

recorded as daily_precip_mm).

In this case, wind speed is Missing at Random because it is dependent on another recorded
variable.

An Aside: Naming missingness

If you are thinking “Missing At Random (MAR) seems like a bad name - it is not
random at all! The missingness is impacted by another recorded variable!” you
are in abundant company. A number of people have called for this mechanism to
be renamed as “Missing conditionally at random” instead, but so far the change
has not gained widespread traction. At another meeting, “Missing For ... Reasons”
was also proposed, but was not specific enough. (Joking).

Critical thinking: Imagine you are the tornado researcher in the example above, what other
hypothetical causes may result in tornado wind speeds being missing at random?

Let’s explore a different (also theoretical) dataset with twister recordings that might indicate
values that are missing at random.

vis _miss(df_mar)
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ggplot(data = df_mar) +

geom_miss_point(aes(x = daily_precip_mm, y = max_windspeed_mph))
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12.2.1 MAR: Implications

MAR data means you should be carefully imputing your data. Deleting observations with
missing values is not appropriate, as you will likely bias your results.

[TODO: Add more details and worked examples of the implications in this section]

12.3 Missing not at random (MNAR)

12.3.1 MNAR explanation
If missingness within a variable is related to unobserved data (including values of the missing
variable itself), the missingness is missing not at random (MNAR).

Let’s again envision that we are Bill Paxton, driving out to a tornado to release our devices
that record wind speed. In this scenario, the tornado wind speeds are so high that upon
approaching the tornado our truck is tipped over, thwarting our efforts to release the devices.
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Therefore, we are missing wind speed data for the tornado because the wind speeds were so
high.

Because the missingness in wind speed depends on the unrecorded high values of wind speed,
the values are missing not at random.

Critical thinking: Brainstorm other examples of how values could be MNAR, either from
your own work or hypothetically.

df_mnar <- twister %>Y%

mutate (
# add some auxiliary random noise to add a sprinkle of missingness
rand_noise = runif(n = dplyr::n()),
max_windspeed_mph = case_when(
max_windspeed_mph >= 200 ~ NA_real_,
rand_noise > 0.99 ~ NA_real_,
TRUE ~ max_windspeed_mph

))

vis_miss(df_mnar)
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gg_miss_fct(df_mnar, fct = tornado_class)
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[TODO: unpack the difficulty in recognising this type of missingness]

It is hard to understand and identify this missingness precisely, as we can see in the example
above, we’ve set values to be missing once windspeed is over 200Mph, we no longer have those
values being recorded! Instead, it appears as though something happens to missing data once
daily precipitation goes over 25mm.

12.3.1.1 MNAR: Implications

It is important to recognise MNAR as it introduces bias into the estimation of associations
and parameters of interest.

12.4 Some more examples of MCAR, MAR, and MNAR
[TODO: combine these examples with the above examples for twister data)]

12.4.1 Example: MCAR

Now we are going to cover some visualisations to show what certain missingness structures
might look like.

vis_miss(df_mcar, cluster = TRUE)
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Looking at our data mt_ cars, we have applied some clustering to the missingness - and we
see that there is still a lot of noise in the missingness. We can also try arranging by a few
different variables, but the important thing to take away here is that “random” or “noisy”
looking pattern generally suggests there isn’t much variation going on in our data. We could
say that it is MCAR.

12.4.2 Example: MAR
We can do something similar for another dataset, oceanbuoys.
oceanbuoys %>%

arrange(year) %>%
vis_miss()
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Arranging by variable year we see that there is some definite clustering of missingness - this
is a common symptom of data MAR.

12.4.3 Example: MNAR

ocean <- oceanbuoys %>’

mutate(wind_ew = if_else(sea_temp_c < 26.55,
true = NA_real_,
false = wind_ew),

wind_ns = if_else(sea_temp_c > 26.55,

true = NA_real_,
false = wind_ns)) %>%

select(-sea_temp_c)

Finally, here is some data MNAR.

vis_miss(ocean, cluster = TRUE)
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Here, we have our ocean data, but I have made wind variables be missing according to a
variable I have removed from the dataset - something now unobserved. In this case, we can
see some very clear structure, but this is not always the case.

It is important to remember it can be very difficult to ascertain whether missingness MCAR,
MAR or MNAR. These visualisations are one way to explore missingness, but they are not
definitive - we will cover some more useful methods later on in the course.
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Part VI

Single Imputation of Missing Data

113



13 Single Imputation of missing data

In this section, we are going to focus on two areas:

1. Using imputations to understand data structure
2. Visualising and exploring imputed values.

The goal is to develop skills in imputing data and tracking missing values, and visualising
imputed values against data.

Some of these techniques might look familiar. This is one of the benefits to using naniar; the
methods applied for exploring missing values are similar to exploring imputations.

13.1 Performing and tracking imputation

library(naniar)

library(tidyverse)
-- Attaching packages -----------———————————————————————————- tidyverse 1.3.1 --
v ggplot2 3.3.6 v purrr 0.3.4
v tibble 3.1.7 v dplyr 1.0.9
v tidyr 1.2.0 v stringr 1.4.0
v readr 2.1.2 v forcats 0.5.1
—-- Conflicts ——————=——————————— tidyverse_conflicts() --

X dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()

One of the goals in exploring missing data is to understand any underlying biases and make
the data suitable for analysis. Once we understand our data and the relationships amongst
the variables and the missingness, it is a good idea to perform imputation, so that you can
conduct analysis with a full dataset.
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13.2 Using imputations to understand data structure

Previous chapters used geom_miss_point() to explore missing values. This “shifted” the
missing values below the range of the data so we could see them.

ggplot(airquality,
aes(x = Ozone,
y = Solar.R)) +
geom_miss_point ()
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This shifting was actually “imputing” the data! Remember, “Impute” means to fill in a
missing value. We are going to recreate these visualisations using impute_below() from

naniar. This imputes values below the range of the data. For example, for this vector of
numbers 5:10 with one missing value:

vec <- c(5,6,7,NA,9,10)

impute_below(vec)

[1] 5.00000 6.00000 7.00000 4.40271 9.00000 10.00000

115



it imputes the value 4.4 into the missing value, since this is lower than the lowest value of the
data at hand, namely 5.000.

13.2.1 impute_below()

We can use impute_below() in combination with mutate() to impute specific values.

For example:

airquality %>%
mutate (Ozone = impute_below(0zone))

Ozone Solar.R Wind Temp Month Day

1 41.00000 190 7.4 67 5 1
2 36.00000 118 8.0 72 5 2
3 12.00000 149 12.6 74 5 3
4 18.00000 313 11.5 62 5 4
5 -19.72321 NA 14.3 56 5 b
6 28.00000 NA 14.9 66 5 6
7 23.00000 299 8.6 65 5 7
8 19.00000 99 13.8 59 5 8
9 8.00000 19 20.1 61 5 9
10 -18.51277 194 8.6 69 5 10
11 7.00000 NA 6.9 74 5 11
12 16.00000 256 9.7 69 5 12
13 11.00000 290 9.2 66 5 13
14  14.00000 274 10.9 68 5 14
15 18.00000 65 13.2 58 5 15
16 14.00000 334 11.5 64 5 16
17  34.00000 307 12.0 66 5 17
18 6.00000 78 18.4 57 5 18
19  30.00000 322 11.5 68 5 19
20 11.00000 44 9.7 62 5 20
21 1.00000 8 9.7 59 5 21
22 11.00000 320 16.6 73 5 22
23 4.00000 256 9.7 61 5 23
24 32.00000 92 12.0 61 5 24
256 -17.81863 66 16.6 57 5 25
26 -19.43853 266 14.9 58 5 26
27 -15.14310 NA 8.0 57 5 27
28  23.00000 13 12.0 67 5 28
29  45.00000 252 14.9 81 5 29
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116 45.00000 212 9.7 79 8 24
117 168.00000 238 3.4 81 8 25
118 73.00000 215 8.0 86 8 26
119 -14.86296 1563 5.7 88 8 27
120 76.00000 203 9.7 97 8 28
121 118.00000 2256 2.3 94 8 29
122 84.00000 237 6.3 96 8 30
123 85.00000 188 6.3 94 8 31
124 96.00000 167 6.9 91 9 1
125 78.00000 197 5.1 92 9 2
126 73.00000 183 2.8 93 9 3
127 91.00000 189 4.6 93 9 4
128 47.00000 95 7.4 87 9 b
129 32.00000 92 156.5 84 9 6
130 20.00000 252 10.9 80 9 7
131 23.00000 220 10.3 78 9 8
132 21.00000 230 10.9 75 9 9
133 24.00000 259 9.7 73 9 10
134 44.00000 236 14.9 81 9 11
135 21.00000 259 16.5 76 9 12
136 28.00000 238 6.3 77 9 13
137  9.00000 24 10.9 71 9 14
138 13.00000 112 11.5 71 9 15
139 46.00000 237 6.9 78 9 16
140 18.00000 224 13.8 67 9 17
141 13.00000 27 10.3 76 9 18
142 24.00000 238 10.3 68 9 19
143 16.00000 201 8.0 82 9 20
144 13.00000 238 12.6 64 9 21
145 23.00000 14 9.2 71 9 22
146 36.00000 139 10.3 81 9 23
147  7.00000 49 10.3 69 9 24
148 14.00000 20 16.6 63 9 25
149 30.00000 193 6.9 70 9 26
150 -14.83089 145 13.2 77 9 27
151 14.00000 191 14.3 75 9 28
152 18.00000 131 8.0 76 9 29
153 20.00000 223 11.5 68 9 30

However, sometimes you want to do this across many variables. Using the same approach
for all variables in the dataset could be at best repetitive, and at worst lead to unintended
mistakes. We can work around this by using across.
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If we want to impute all variables, we can use across like so:

airquality %>%
mutate (across(everything() ,impute_below))

Ozone  Solar.R Wind Temp Month Day

1 41.00000 190.00000 7.4 67 5 1
2 36.00000 118.00000 8.0 72 5 2
3 12.00000 149.00000 12.6 74 5 3
4 18.00000 313.00000 11.5 62 5 4
5 -19.72321 -33.57778 14.3 56 5 b
6 28.00000 -33.07810 14.9 66 5 6
7 23.00000 299.00000 8.6 65 5 7
8 19.00000 99.00000 13.8 59 5 8
9 8.00000 19.00000 20.1 61 5 9
10 -18.51277 194.00000 8.6 69 5 10
11 7.00000 -21.37719 6.9 74 5 11
12 16.00000 256.00000 9.7 69 5 12
13 11.00000 290.00000 9.2 66 5 13
14 14.00000 274.00000 10.9 68 5 14
15 18.00000 65.00000 13.2 58 5 15
16 14.00000 334.00000 11.5 64 5 16
17 34.00000 307.00000 12.0 66 5 17
18 6.00000 78.00000 18.4 57 5 18
19  30.00000 322.00000 11.5 68 5 19
20 11.00000 44.00000 9.7 62 5 20
21 1.00000 8.00000 9.7 59 5 21
22 11.00000 320.00000 16.6 73 5 22
23 4.00000 25.00000 9.7 61 5 23
24  32.00000 92.00000 12.0 61 5 24
256 -17.81863 66.00000 16.6 57 5 25
26 -19.43853 266.00000 14.9 58 5 26
27 -15.14310 -24.60954 8.0 57 5 27
28  23.00000 13.00000 12.0 67 5 28
29  45.00000 252.00000 14.9 81 5 29
30 115.00000 223.00000 5.7 79 5 30
31  37.00000 279.00000 7.4 76 5 31
32 -16.17315 286.00000 8.6 78 6 1
33 -14.65883 287.00000 9.7 74 6 2
34 -17.85609 242.00000 16.1 67 6 3
35 -13.29299 186.00000 9.2 84 6 4
36 -16.16323 220.00000 8.6 85 6 5
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82
73
81
91
80
81
82
84
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80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

79.
63.
16.
-16.
-16.
80.
108.
20.
52.
82.
50.
64.
59.
39.
.00000
16.
78.
35.
66.
122,
89.
110.
-14.
-16.
44
28.
65.
-19.
22.
59.
23.
31.
44,
21.
.00000
-18.
45.
168.
73.
-14.
76.
118.
84.

00000
00000
00000
92150
60335
00000
00000
00000
00000
00000
00000
00000
00000
00000

00000
00000
00000
00000
00000
00000
00000
78907
19151
00000
00000
00000
73591
00000
00000
00000
00000
00000
00000

92235
00000
00000
00000
86296
00000
00000
00000

187.
220.
.00000
258.
295.
294.
223.

81.

82.
213.
275.
253.
254.

83.

24.

TT.
-30.
-33.
-21.
255.
229.
207.
222.
137.
192.
273.
157.

64.

71.

51.
115.
244.
190.
259.

36.
255.
212.
238.
215.
153.
203.
225.
237.

00000
00000

00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
94374
38707
48980
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000

(04}

12.

1

10.

11.
11.
11.

11.
10.

10.
10.
15.
14.
12.
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123 85.00000 188.00000 6.3 94 8 31
124 96.00000 167.00000 6.9 91 9 1
125 78.00000 197.00000 5.1 92 9 2
126 73.00000 183.00000 2.8 93 9 3
127 91.00000 189.00000 4.6 93 9 4
128 47.00000 95.00000 7.4 87 9 b
129 32.00000 92.00000 15.5 84 9 6
130 20.00000 252.00000 10.9 80 9 7
131 23.00000 220.00000 10.3 78 9 8
132 21.00000 230.00000 10.9 75 9 9
133 24.00000 259.00000 9.7 73 9 10
134 44.00000 236.00000 14.9 81 9 11
135 21.00000 259.00000 15.5 76 9 12
136 28.00000 238.00000 6.3 77 9 13
137 9.00000 24.00000 10.9 71 9 14
138 13.00000 112.00000 11.5 71 9 15
139 46.00000 237.00000 6.9 78 9 16
140 18.00000 224.00000 13.8 67 9 17
141 13.00000 27.00000 10.3 76 9 18
142 24.00000 238.00000 10.3 68 9 19
143 16.00000 201.00000 8.0 82 9 20
144 13.00000 238.00000 12.6 64 9 21
145 23.00000 14.00000 9.2 71 9 22
146 36.00000 139.00000 10.3 81 9 23
147  7.00000 49.00000 10.3 69 9 24
148 14.00000 20.00000 16.6 63 9 25
149 30.00000 193.00000 6.9 70 9 26
150 -14.83089 145.00000 13.2 77 9 27
151 14.00000 191.00000 14.3 75 9 28
152 18.00000 131.00000 8.0 76 9 29
153 20.00000 223.00000 11.5 68 9 30

Here we use the everything () helper function from dplyr, to select all variables. We can use
any type of selection, from dplyrs tidy select.

We can impute only those variables that satisfy a condition, like is this column numeric with
is.numeric() using where() like so:

airquality %>%

mutate (across(where(is.numeric) ,impute_below))

Ozone Solar.R Wind Temp Month Day
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11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

41.
36.
12.
18.
-19.
28.
23.
19.
.00000
-18.
.00000
16.
.00000
14.
18.
14.
34.
.00000
30.
11.
.00000
11.
.00000
32.
-17.
-19.
-15.
23.
45.
115.
37.
-16.
-14.
-17.
-13.
-16.
-19.
29.
-19.
T1.
39.
-13.
-13.

11

00000
00000
00000
00000
72321
00000
00000
00000

51277

00000

00000
00000
00000
00000

00000
00000

00000

00000
81863
43853
14310
00000
00000
00000
00000
17315
65883
85609
29299
16323
60935
00000
65780
00000
00000
40961
53728

190.
118.
149.
313.
-33.
-33.
299.
99.
19.
194.
-21.
256.
290.
274.
65.
334.
307.
78.
322.
44 .
.00000
320.
25.
92.
66.
266.
-24.
13.
252.
223.
279.
286.
287.
242.
186.
220.
264.
127.
273.
291.
323.
259.
250.

00000
00000
00000
00000
57778
07810
00000
00000
00000
00000
37719
00000
00000
00000
00000
00000
00000
00000
00000
00000

00000
00000
00000
00000
00000
60954
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000

N © 01 00O N WONEFENOOPP»NOOO OVWOHOONOGNNOU P OUITNONNOOS”EFE, 0O O WwOo O O

67
72
74
62
56
66
65
59
61
69
74
69
66
68
58
64
66
57
68
62
59
73
61
61
57
58
57
67
81
79
76
78
74
67
84
85
79
82
87
90
87
93
92

© 0 N O O WN =

[ I I e N T e e e e
= O © 00 ~NO O d W N+~ O

W W NDNDNDDNDDNDDNDN
= O © 00 N O O b W

© 00 N O O WN -

-
o

[o) 70> Ji©) Je) Jie) Mo ) N ©) Wi @) N o> o> Ne > W' > W@ 2 HN@ 2 N 2 I 2 & 2 & 2 & 2 I 2 JN & 2 S 2 A 2 NG 2 B 2 NN 2 N 2 N 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 I 2 B 2 G 2 @ 2 IR 2 & 2 IR & 2 A6
= N
= N

-
N

124



44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86

23.
-19.
-16.

21.

37.

20.

12.

13.
-17.
-16.
-13.
-16.
-12.
-13.
-16.
-17.
-15.
-19.
135.

49.

32.
-14.

64.

40.

TT.

97.

97.

85.
-13.

10.

27.
-13.
.00000

48.

35.

61.

79.

63.

16.
-16.
-16.

80.
108.

00000
65993
48342
00000
00000
00000
00000
00000
17718
74073
65786
78786
30098
33171
77414
08225
98818
17558
00000
00000
00000
27138
00000
00000
00000
00000
00000
00000
51764
00000
00000
48998

00000
00000
00000
00000
00000
00000
92150
60335
00000
00000

148.
332.
322.
191.
284.

37.
120.
137.
150.

59.

91.
250.
135.
127.

47.

98.

31.
138.
269.
248.
236.
101.
175.
314.
276.
267.
272.
175.
139.
264.
175.
291.

48.
260.
274.
285.
187.
220.
.00000
258.
295.
294.
223.

00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
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87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

20.
52.
82.
50.
64.
59.
39.
.00000
16.
78.
35.
66.
122.
89.
110.
-14.
-16.
44 .
28.
65.
-19.
22.
59.
23.
31.
44 .
21.
.00000
-18.
45.
168.
73.
-14.
76.
118.
84.
85.
96.
78.
73.
91.
4a7.
32.

00000
00000
00000
00000
00000
00000
00000

00000
00000
00000
00000
00000
00000
00000
78907
19151
00000
00000
00000
73591
00000
00000
00000
00000
00000
00000

92235
00000
00000
00000
86296
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000

81
82

213.
275.
253.
254.

83.

24.

TT.
-30.
-33.
-21.
255.
229.
207.
222.
137.
192.
273.
157.

64.

71.

51.
115.
244.
190.
259.

36.
255.
212.
238.
215.
153.
203.
225.
237.
188.
167.
197.
183.
189.

95
92

.00000
.00000
00000
00000
00000
00000
00000
00000
00000
94374
38707
48980
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
.00000
.00000

12.

1

P == = =
P 1T OO NOOO R O, P BEL, 00O

[y
N
OO OO0 O WWWNNO PN WOU WO WwWwOo NOLOoolo O WO O © k00O NP P PO

15.

wWw o O N NN

&SN o N

N PN OO0 ON O 0o WO

82
86
88
86
83
81
81
81
82
86
85
87
89
90
90
92
86
86
82
80
79
7
79
76
78
78
7
72
75
79
81
86
88
97
94
96
94
91
92
93
93
87
84

© © © O © O 0 00 00 0 0 00 O 0 00 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 W 00 N N N N N N

126

W W N NNDN
= O © 00 N O

© 0 N O O W N -

W W NNDNMNNDMNNDNNDMNDNDMNNDMNDNDE R PR P B2
R O O 00 NO O P WNEFE O OWOWNOO P WNNEL O

o O WN -



130 20.00000 252.00000 10.9 80 9 7
131 23.00000 220.00000 10.3 78 9 8
132 21.00000 230.00000 10.9 75 9 9
133 24.00000 259.00000 9.7 73 9 10
134 44.00000 236.00000 14.9 81 9 11
135 21.00000 259.00000 15.5 76 9 12
136 28.00000 238.00000 6.3 77 9 13
137  9.00000 24.00000 10.9 71 9 14
138 13.00000 112.00000 11.5 71 9 15
139 46.00000 237.00000 6.9 78 9 16
140 18.00000 224.00000 13.8 67 9 17
141 13.00000 27.00000 10.3 76 9 18
142 24.00000 238.00000 10.3 68 9 19
143 16.00000 201.00000 8.0 82 9 20
144 13.00000 238.00000 12.6 64 9 21
145 23.00000 14.00000 9.2 71 9 22
146 36.00000 139.00000 10.3 81 9 23
147  7.00000 49.00000 10.3 69 9 24
148 14.00000 20.00000 16.6 63 9 25
149 30.00000 193.00000 6.9 70 9 26
150 -14.83089 145.00000 13.2 77 9 27
151 14.00000 191.00000 14.3 75 9 28
152 18.00000 131.00000 8.0 76 9 29
153 20.00000 223.00000 11.5 68 9 30

This reads as:
Use airquality then across variables where they are numeric, impute below

We can choose specific variables like so:

airquality %>%
mutate (across(c(0zone, Solar.R),impute_below))

Ozone  Solar.R Wind Temp Month Day

1 41.00000 190.00000 7.4 67 5 1
2 36.00000 118.00000 8.0 72 5 2
3 12.00000 149.00000 12.6 74 5 3
4 18.00000 313.00000 11.5 62 5 4
5 -19.72321 -33.57778 14.3 56 5 b
6 28.00000 -33.07810 14.9 66 5 6
7 23.00000 299.00000 8.6 65 5 7
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10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

19.
.00000
-18.
.00000
16.
11.
14.
18.
14.
34.
.00000
30.
.00000
.00000
11.
.00000

32.
-17.
-19.
-15.

23.

45.
115.

37.
-16.
-14.
-17.
-13.
-16.
-19.

29.
-19.

T1.

39.
-13.
-13.

23.
-19.
-16.

21.

37.

20.

12.

11

00000

51277

00000
00000
00000
00000
00000
00000

00000

00000

00000
81863
43853
14310
00000
00000
00000
00000
17315
65883
85609
29299
16323
60935
00000
65780
00000
00000
40961
53728
00000
65993
48342
00000
00000
00000
00000

99
19

194.
-21.
256.
290.
274.
65.
334.
307.
78.
322.
44 .

320.
25.
92.
66.

266.

-24.
13.

252.

223.

279.

286.

287.

242.

186.

220.

264.

127.

273.

291.

323.

259.

250.

148.

332.

322.

191.

284.
37.

120.
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.00000
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37719
00000
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00000
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51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

13.
-17.
-16.
-13.
-16.
-12.
-13.
-16.
-17.
-15.
-19.
135.

49.

32.
-14.

64.

40.

TT.

97.

97.

85.
-13.

10.

27.
-13.
.00000

48.

35.

61.

79.

63.

16.
-16.
-16.

80.
108.

20.

52.

82.

50.

64.

59.

39.

00000
17718
74073
65786
78786
30098
33171
77414
08225
98818
17558
00000
00000
00000
27138
00000
00000
00000
00000
00000
00000
51764
00000
00000
48998

00000
00000
00000
00000
00000
00000
92150
60335
00000
00000
00000
00000
00000
00000
00000
00000
00000

137.
150.

59.

91.
250.
135.
127.

47.

98.

31.
138.
269.
248.
236.
101.
175.
314.
276.
267.
272.
175.
139.
264.
175.
291.

48.
260.
274.
285.
187.
220.

258.
295.
294.
223.

81.

82.
213.
275.
2563.
254.
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00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
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00000
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00000
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94

95

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

.00000
16.
78.
35.
66.

122,
89.

110.

-14.

-16.
44,
28.
65.

-19.
22.
59.
23.
31.
44
21.

.00000

-18.
45.

168.
73.

-14.
76.

118.
84.
85.
96.
78.
73.
91.
47.
32.
20.
23.
21.
24.
44,
21.
28.

00000
00000
00000
00000
00000
00000
00000
78907
19151
00000
00000
00000
73591
00000
00000
00000
00000
00000
00000

92235
00000
00000
00000
86296
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000

24
7

-30.
-33.
-21.
255.
229.
207.
222.
137.
192.
273.
157.

64.

T1.

51.
115.
244.
190.
259.

36.
255.
212.
238.
215.
153.
203.
225.
237.
188.
167.
197.
183.
189.

95.

92.
262.
220.
230.
259.
236.
259.
238.

.00000
.00000
94374
38707
48980
00000
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00000
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00000
00000
00000
00000
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00000
00000
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137  9.00000 24.00000 10.9 71 9 14
138 13.00000 112.00000 11.5 71 9 15
139 46.00000 237.00000 6.9 78 9 16
140 18.00000 224.00000 13.8 67 9 17
141 13.00000 27.00000 10.3 76 9 18
142 24.00000 238.00000 10.3 68 9 19
143 16.00000 201.00000 8.0 82 9 20
144 13.00000 238.00000 12.6 64 9 21
145 23.00000 14.00000 9.2 71 9 22
146 36.00000 139.00000 10.3 81 9 23
147  7.00000 49.00000 10.3 69 9 24
148 14.00000 20.00000 16.6 63 9 25
149 30.00000 193.00000 6.9 70 9 26
150 -14.83089 145.00000 13.2 77 9 27
151 14.00000 191.00000 14.3 75 9 28
152 18.00000 131.00000 8.0 76 9 29
153 20.00000 223.00000 11.5 68 9 30

We can take advantage of selection helpers from dplyrs tidy select:

airquality %>%
mutate(across(c(Ozone, Solar.R, starts_with("T")),impute_below))

Ozone  Solar.R Wind Temp Month Day

1 41.00000 190.00000 7.4 67 5 1
2 36.00000 118.00000 8.0 72 5 2
3 12.00000 149.00000 12.6 74 5 3
4 18.00000 313.00000 11.5 62 5 4
5 -19.72321 -33.57778 14.3 56 5 b
6 28.00000 -33.07810 14.9 66 5 6
7 23.00000 299.00000 8.6 65 5 7
8 19.00000 99.00000 13.8 59 5 8
9 8.00000 19.00000 20.1 61 5 9
10 -18.51277 194.00000 8.6 69 5 10
11 7.00000 -21.37719 6.9 74 5 11
12 16.00000 256.00000 9.7 69 5 12
13 11.00000 290.00000 9.2 66 5 13
14  14.00000 274.00000 10.9 68 5 14
15 18.00000 65.00000 13.2 58 5 15
16 14.00000 334.00000 11.5 64 5 16
17 34.00000 307.00000 12.0 66 5 17
18 6.00000 78.00000 18.4 57 5 18
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08225
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7
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65
73
76
77
76
76
76
75
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7
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62 135.00000 269.00000 4.1 84 7 1
63  49.00000 248.00000 9.2 85 7T 2
64  32.00000 236.00000 9.2 81 7 3
65 -14.27138 101.00000 10.9 84 7T 4
66 64.00000 175.00000 4.6 83 7 5
67  40.00000 314.00000 10.9 83 7 6
68  77.00000 276.00000 5.1 88 T 7
69  97.00000 267.00000 6.3 92 7 8
70  97.00000 272.00000 5.7 92 7T 9
71  85.00000 175.00000 7.4 89 7 10
72 -13.51764 139.00000 8.6 82 7 11
73 10.00000 264.00000 14.3 73 7 12
74  27.00000 175.00000 14.9 81 7 13
75 -13.48998 291.00000 14.9 91 7 14
76 7.00000 48.00000 14.3 80 7 15
77  48.00000 260.00000 6.9 81 7 16
78  35.00000 274.00000 10.3 82 7 17
79  61.00000 285.00000 6.3 84 7 18
80  79.00000 187.00000 5.1 87 7 19
81 63.00000 220.00000 11.5 85 7 20
82 16.00000  7.00000 .9 T4 7 21
83 -16.92150 258.00000 9.7 81 7 22
84 -16.60335 295.00000 11.5 82 7 23
85  80.00000 294.00000 8.6 86 7 24
86 108.00000 223.00000 8.0 85 7 25
87  20.00000 81.00000 8.6 82 7 26
88  52.00000 82.00000 12.0 86 T 27
89  82.00000 213.00000 7.4 88 7 28
90  50.00000 275.00000 7.4 86 7 29
91 64.00000 253.00000 7.4 83 7 30
92  59.00000 254.00000 9.2 81 7 31
93 39.00000 83.00000 6.9 81 8 1
94 9.00000 24.00000 13.8 81 8 2
95 16.00000 77.00000 7.4 82 8 3
96  78.00000 -30.94374 6.9 86 8 4
97  35.00000 -33.38707 7.4 85 8 b
98 66.00000 -21.48980 4.6 87 8 6
99 122.00000 255.00000 4.0 89 8 7
100 89.00000 229.00000 10.3 90 8 8
101 110.00000 207.00000 8.0 90 8 9
102 -14.78907 222.00000 8.6 92 8 10
103 -16.19151 137.00000 11.5 86 8 11
104 44.00000 192.00000 11.5 86 8 12
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148 14.00000 20.00000 16.6 63 9 25
149 30.00000 193.00000 6.9 70 9 26
150 -14.83089 145.00000 13.2 77 9 27
151 14.00000 191.00000 14.3 75 9 28
152 18.00000 131.00000 8.0 76 9 29
1563 20.00000 223.00000 11.5 68 9 30

13.3 Tracking missing values

We need to track the missing values, once we impute them. Otherwise we don’t know what
was imputed and what was not. We can see that in this example, once we impute the data,
we have no way to recognise which one it is.

df <- tibble(varl = c(5, 6, 7, NA, 9, 10))
df

# A tibble: 6 x 1
varil
<dbl>

5

6

7

NA

9

10

O WN -

daf %>%
mutate (across(everything() ,impute_below))

# A tibble: 6 x 1
varl

<dbl>

5

6

7

4.40

9

10

D O WN -

We can identify missings by using nabular to turn the data into nabular form.
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nabular (df)

# A tibble: 6 x 2
varl varl_NA
<dbl> <fct>
5 INA
6 !NA
7 'NA
NA NA
9 INA
10 INA

O WN -

Now when we impute the data, we can see that the shadow variable, varl_NA reveals the
imputed value, 4.40.

df %>%
nabular() %>%
mutate (across(everything() ,impute_below))

# A tibble: 6 x 2
varl varl_NA
<dbl> <fct>

1 5 INA
2 6 'NA
3 7 INA
4 4.40 NA

5 9 INA
6 10 INA

13.4 Visualise imputed values against data values using histograms

Using this imputed data, we can explore the number of missings in a single variable, along
with it’s distribution, using a histogram and colouring the missings using £i1l1 = Ozone_NA.

aq_imp <- airquality %>%

nabular() %>%
mutate (across(everything() ,impute_below))

ggplot(aq_imp,
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aes(x = Ozone,
fill = Ozone NA)) +
geom_histogram()

“stat_bin() "~ using “bins = 30°. Pick better value with “binwidth-.

20-
15-
Ozone_NA
c
§ 10 - . INA
W
5-
.. B =
0 50 100 150
Ozone

Here we see that there are a few missing values - two bars around 20, so just under 40 missing
values.

13.5 Visualise imputed values against data values using facets

We can take this same plot and visualise it across facets. For example, plot it by month, which

shows us that most missing values occur in month 6 - which didn’t have many high values of
ozone.

ggplot(aq_imp,
aes(x = Ozone,

fill = Ozone NA)) +
geom_histogram() +
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facet_wrap(~Month)

“stat_bin() "~ using “bins = 30°. Pick better value with “binwidth-.

5 6 7
9-
6-
A
. o T I.l.llh. SB  Gzone NA
c
§ 2 . 50 100 150 . INA
B na
9-
6-

i lll]llllll 11 nn

50 100 150 0 50 100 150
Ozone

13.6 Visualize imputed values using facets

We can split the plot according to the missingness of solar radiation by referring to it as
Solar.R_NA

ggplot(ag_imp,
aes(x = Ozone,
fill = Ozone_NA)) +
geom_histogram() +
facet_wrap(~Solar.R_NA)

“stat_bin() " using “bins = 30°. Pick better value with “binwidth-.
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This shows us that there aren’t many missing values in ozone when solar radiation is missing.

13.7 Visualize imputed values against data values using scatterplots

Previously we could identify imputed values by referring to the shadow variable - e.g., 0zone_NA.
However, if you want to colour by two variables, you just need to know if any of them were
imputed. We can add a column with labels to identify whether there is a missing value in a
column. The function add_label_missings does this for us, adding a column, any_missing.

aq_imp <- airquality %>%
nabular() %>%
add_label_missings() %>%
mutate (across(everything() ,impute_below))

aq_imp

# A tibble: 153 x 13
Ozone Solar.R Wind Temp Month  Day Ozone_NA Solar.R_NA Wind_NA Temp_NA
<dbl> <dbl> <dbl> <int> <int> <int> <fct> <fct> <fct> <fct>
1 41 190 7.4 67 5 1 INA INA INA INA
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2 36 118 8 72 5 2 INA INA INA INA

3 12 149 12.6 74 5 3 INA INA INA INA

4 18 313 11.5 62 5 4 INA INA INA INA

5 -19.7 -33.6 14.3 56 5 5 NA NA INA INA

6 28 -33.1 14.9 66 5 6 !'NA NA INA INA

7 23 299 8.6 65 5 7 INA INA INA INA

8 19 99 13.8 59 5 8 INA INA INA INA

9 8 19 20.1 61 5 9 INA INA INA INA

10 -18.5 194 8.6 69 5 10 NA INA INA INA
# ... with 143 more rows, and 3 more variables: Month_NA <fct>, Day_NA <fct>,

# any_missing <chr>

We can now recreate the same figure as geom_miss_point ()!

ggplot(aq_imp,
aes(x = Ozone,

y = Solar.R,
colour = any_missing)) +
geom_point ()
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14 Assessing imputation

library(naniar)
library(tidyverse)
-- Attaching packages -----——-----———————————————————————————- tidyverse 1.3.1 --
v ggplot2 3.3.6 v purrr 0.3.4
v tibble 3.1.7 v dplyr 1.0.9
v tidyr 1.2.0 v stringr 1.4.0
v readr 2.1.2 v forcats 0.5.1
—-- Conflicts —————————————————— o tidyverse_conflicts() --

x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()

In this chapter we discuss whether imputation is appropriate, and the features of good and
bad imputations. You will learn how to evaluate imputed values by using visualisations to
assess their summary features: the mean/median, scale, and spread.

14.1 What makes a good imputation

Imputing missing values needs to be done with care - you want to avoid imputing unlikely values
like mid winter temperatures into the middle of summer, giving pigs a wing span measurement,
or heavy rainfall into a known drought.

14.2 When to impute

Not everything can be solved with imputation. If you don’t already have the information,
sometimes it is not appropriate to impute variables like, age, race, sex and gender without
first confirming known facts about your population. Sometimes this means talking to the
person who collected or curated the data to understand the population studied. You might
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learn some variables remain fixed over time, and so can be perfectly imputed. Other times,
we might not know, so leaving the values as missing might be the most appropriate action.
Imputation isn’t always the answer.

Another consideration for imputation is when there is simply too much missing data. For
example, if you have a variable with 50% of the values missing, imputation might not be
appropriate unless you have a very strong modelling case. For example, you know all the ages
were not recorded for every person, but were the same for each person, so you can impute
perfectly. When there are missing values in the outcome variable (the “Y”, the Dependent
Variable, DV, it has many names!), it is generally not a good idea to impute data for these
values. The reason is that you are effectively using the data twice.

[TODO: add a small simulation on this]

[TODO: add caveats around Bayesian/likelihood simulation approaches]

14.3 Understanding the good by understanding the bad

To understand good imputation, it is useful to understand bad imputations. One particularly
bad imputation is mean imputation, which takes the mean of complete values as the imputed
value.

For example, in a dataframe with 5 values and one missing, we calculate the mean from
complete observations using na.rm = TRUE, and use this to impute the missing values. The
steps are shown here:

df <- tibble(x = c(1, 4, 9, 16, NA, 36))
df

# A tibble: 6 x 1
X
<dbl>
1
4
9
16
NA
36

O WN -

mean (df$x, na.rm = TRUE)

[1] 13.2
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df [is.na(df)] <- mean(df$x, na.rm = TRUE)
df

# A tibble: 6 x 1
X
<dbl>
1
4
9
16
13.2
36

DO WN -

14.3.1 Demonstrating mean imputation

This is generally a terribly idea. For example, imagine we had data like this, with missing
values:

ggplot(df,
aes(x = id,

y = x)) +
geom_point ()

Warning: Removed 50 rows containing missing values (geom_point).
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Imputing the mean value in this graph, we get this:

df %>%
nabular() %>%
mutate (across(everything(), impute_mean)) 7%>%
ggplot(aes(x = id,
y =X,
colour = x_NA)) +
geom_point ()
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The mean does not respect the underlying process of the data. Visualisation is a very key tool
here to explore and demonstrate this pattern.

14.3.2 Explore bad imputations: The mean
To examine these bad imputations, we use the impute_mean function from the naniar package.
Similar to impute_below used in the previous chapter, we can use across and friends with

impute_mean. So it can work on a vector, on variables based on some condition like are they
numeric, for specified variables, or for all variables.

14.3.3 Tracking missing values
To visualise imputations we use the same process as for impute_below:
aq_impute_mean <- airquality %>%
nabular(only_miss = TRUE) %>%
mutate (across(everything(), impute_mean)) %>%

add_label shadow()

aq_impute_mean
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# A tibble: 153 x 9
Ozone Solar.R Wind Temp Month Day Ozone_NA Solar.R_NA any_missing

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <fct> <fct> <chr>
1 41 190 7.4 67 5 1 INA INA Not Missing
2 36 118 8 72 5 2 INA INA Not Missing
3 12 149 12.6 74 5 3 INA INA Not Missing
4 18 313 11.5 62 5 4 INA INA Not Missing
5 42.1 186. 14.3 56 5 5 NA NA Missing
6 28 186. 14.9 66 5 6 !NA NA Missing
7 23 299 8.6 65 5 7 'NA INA Not Missing
8 19 99 13.8 59 5 8 INA INA Not Missing
9 8 19 20.1 61 5 9 INA INA Not Missing
10 42.1 194 8.6 69 5 10 NA INA Missing
# ... with 143 more rows

We first create nabular data to track missing values. Then, we do our imputations. Then, we
add a label to identify cases with missing observations using add_label_shadow (). One thing
to have up your sleeve it only_miss option, which binds only columns with missing values.
This makes the data bit smaller and easier to handle.

Now that we know a way to impute our data, let’s explore it. We can explore the imputed
values in the same way we did for the previous lesson. But this time our intention is different,
and we want to consider evaluating imputations by looking for changes in the mean, the
spread, and the scale.

[TODO **A small figure/plot that clearly shows what we mean by mean, spread, scale]**

14.3.4 Using a boxplot to explore how the mean changes

We can evaluate changes in the mean or median using a boxplot. We put the missingness of
ozone, ozone_NA, on the x axis, and the values of ozone on the y axis, and use geom_boxplot.

ggplot (aq_impute_mean,
aes(x = Ozone_NA,
y = Ozone)) +
geom_boxplot ()
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From this visualisation, we learn the median value is similar in each group, but the median is
lower for the not missing group. The take away message is the mean isn’t changing. This is
good, but there is more than one feature to explore!

14.4 Using a scatterplot to Explore how spread changes with
imputation

The spread of imputations can be explored using a scatter plot. We plot our airquality
imputed with the mean, with Ozone and solar radiation on the x and y axis, and colouring
according to missingness, any_missing.

ggplot(ag_impute_mean,
aes(x = Ozone,
y = Solar.R,
colour = any_missing)) +
geom_point ()
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We learn there is no variation in the spread of the points! Although we do notice the imputed
values are within a reasonable range of the data.

14.4.1 How to explore imputations for many variables

aq_imp <- airquality %>%
nabular() %>%

mutate (across(everything(), impute_mean))
To make it easier to explore many variables, we use the shadow_long function to return
nabular data in long format. This is similar to pivot_longer, but with our nabular data

aq_imp_long <- shadow_long(aq_imp,
Ozone,
Solar.R)

aq_imp_long

# A tibble: 306 x 4

variable value variable_NA value_NA
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<chr> <dbl> <chr> <chr>

1 Ozone 41 Ozone_NA INA
2 0Ozone 36 Ozone_NA INA
3 Ozone 12 Ozone_NA INA
4 QOzone 18 Ozone_NA INA
5 0Ozone 42.1 Ozone_NA NA
6 Ozone 28 Ozone_NA INA
7 0Ozone 23 Ozone_NA INA
8 Ozone 19 Ozone_NA INA
9 0Ozone 8 Ozone_NA INA
10 Ozone 42.1 Ozone_NA NA
# ... with 296 more rows

Here, we enter in our data, followed by the variables that we want to focus on - in this case,
Ozone and Solar.R. This returns to us data with the columns variable, value, and the
shadow columns, variable_NA and value_NA.

14.4.2 Exploring imputations for many variables

We can then use this in a ggplot, placing value in the x axis, and filling by the missingness of
the value, value_NA, and then using geom_histogram, facetting by variable.

ggplot(ag_imp_long,
aes(x = value,
fill = value NA)) +
geom_histogram() +
facet_wrap(~variable)

“stat_bin() " using “bins = 30°. Pick better value with “binwidth-.
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Ozone Solar.R
50 -

40 -

value_NA

. INA
. NA

count

0 100 200 300 O 100
value

200 300

The format from shadow_long makes it simpler to explore missing values for many variables

[TODO perhaps another example of this with other data]
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15 Imputing with different models

There are many imputation packages in R. We are going to focus on using the simputation
package by Mark van der Loo. simputation provides a simple interface to many imputation
models. We will impute values using a linear model, using the function impute_lm(Q).

Building a good imputation model is super important, but it is a complex topic - there is as
much to building a good imputation model as there is for building a good statistical model.
We focus on how to build up different imputation models and assess and compare them.

library(naniar)
library(tidyverse)
-- Attaching packages -----------———————————————————————————- tidyverse 1.3.1 --
v ggplot2 3.3.6 v purrr 0.3.4
v tibble 3.1.7 v dplyr 1.0.9
v tidyr 1.2.0 v stringr 1.4.0
v readr 2.1.2 v forcats 0.5.1
-- Conflicts ————————————————————————— oo tidyverse_conflicts() --

x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()

library(simputation)

Attaching package: 'simputation'

The following object is masked from 'package:naniar':

impute_median
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When you develop imputation models, it is a good idea to try out a few different models, to
see how the imputed values change according to your assumptions. In this chapter, we are
going to impute data using linear regression.

An Aside: Running many models used to make me feel like I was cheating

I (Nick), studied psychology in my undergraduate degree. The training for statistics
was very focussed on developing a theory first, then designing a study design and
appropriate statistial model. You’d then collect data, and turn the cranks on the
statistical (usually ANOVA) machinery and out would come your answer - is the
result significant: yes, or no? When I started my PhD in statistics, the idea of
exploring many different fits to your data felt strange, and like I was cheating!
Fitting many models in psych would have felt like we were chasing significance,
and that I'd be labelled a “p-value hacker”. In these cases, however, we weren’t
conducting controlled experiments to test a theory, rather we were exploring data
that wasn’t collected with a research question in mind. In our case with
missing data, fitting many models is about trying to identify the most sensible
values that could have existed, so that we can draw sensible inferences on the data.

15.1 How imputation using a linear model works

We previously explored using mean imputation. This is generally a bad imputation method
to use, as it artificially increases the mean and reduces variance, so you aren’t capturing the
natural variation in the data. Similar to how the mean was imputed, we can use a linear
model to impute data. This can take into account some features of the data, to better predict
missing values.

To impute values using a linear model, we use impute_lm from simputation. Let’s create
some fake data, df:

df <- tibble(
y = c(2.67, 3.87, NA, 5.21, NA),
x1 = c(2.43, 3.55, 2.9, 2.72, 4.29),
x2 = c(3.27, 1.45, 1.49, 1.84, 1.15)
)

df

# A tibble: 5 x 3
y x1 x2
<dbl> <dbl> <dbl>
1 2.67 2.43 3.27
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2 3.87
3 NA
4 5.21
5 NA

1.45
1.49
1.84
1.15

Now to use impute_lm(), we specify the variable we would like to impute on as the y or
dependent variable, just as you would with a linear model. On the right hand side of the
formula are the variables we would like to use to inform the imputations on the right hand
side. This returns a data frame with imputed values in y:

at %>%

impute_lm(y ~ x1 + x2)

# A tibble:

y

x1

5x 3

x2

<dbl> <dbl> <dbl>

*
1 2.67
2 3.87
3 5.54
4 5.21
5 2.56

2.43
3.55
2.9

2.72
4.29

3.27
1.45
1.49
1.84
1.15

Of course, we need to use nabular to make sure we can track what values were imputed in

y_NA:

af %>%

nabular() %>%
impute_lm(y ~ x1 + x2)

# A tibble:

y

x1

5x 6

X2

<dbl> <dbl> <dbl>

*
1 2.67
2 3.87
3 b5.54
4 5.21
5 2.56

2.43
3.55
2.9

2.72
4.29

3.27
1.45
1.49
1.84
1.15

y_NA
<fct>
INA
INA
NA
INA
NA

x1_NA
<fct>
INA
INA
INA
INA
INA

x2_NA
<fct>
INA
INA
INA
INA
INA
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15.2 Using impute_1lm

Using airquality data, we can impute the values in Solar.R using Wind, Temp, and Month,
and chain another imputation step in to impute Ozone with the same variables. This gives us
imputations like the following:

aq_imp_lm <- airquality %>7%
nabular() %>%
add_label_shadow() %>%
as.data.frame() %>’
impute_lm(Solar.R ~ Wind + Temp + Month) %>%
impute_lm(Ozone ~ Wind + Temp + Month) %>J
as_tibble()

aq_imp_1lm

# A tibble: 153 x 13
Ozone Solar.R Wind Temp Month Day Ozone_NA Solar.R_NA Wind_NA Temp_NA

<dbl> <dbl> <dbl> <int> <int> <int> <fct> <fct> <fct> <fct>

141 190 7.4 67 5 1 INA INA INA INA

2 36 118 8 72 5 2 INA INA INA INA

3 12 149 12.6 74 5 3 INA INA INA INA

4 18 313 11.5 62 5 4 INA INA INA INA

5 -9.04 138. 14.3 56 5 5 NA NA INA INA

6 28 178. 14.9 66 5 6 !NA NA INA INA

7 23 299 8.6 65 5 7 'NA INA INA INA

8 19 99 13.8 59 5 8 INA INA INA INA

9 8 19 20.1 61 5 9 INA INA INA INA
10 35.2 194 8.6 69 5 10 NA INA INA INA
# ... with 143 more rows, and 3 more variables: Month_NA <fct>, Day_NA <fct>,

# any_missing <chr>

Note: the as.data.frame() is necessary for the time being due to a workaround with
simputation. Nick is hoping to arrive on a better solution to this soon.

15.2.1 Tracking missing values

An important part of imputing data is using the nabular() and add_label_shadow() func-

tions. Without them, we can’t identify which values were missing! So, let’s recap what they
do.
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e nabular() adds the variables with _NA to the data
[TODO: image of this|

e add_label_shadow() adds a variable, any_missing, with values “Missing” or “Not Miss-
ing”.We can use ggplot to show the imputed values, by setting colour = any_missing
in a ggplot.

aq_imp_lm <- airquality %>%
nabular() %>%
add_label_missings() %>%
as.data.frame() %>%
impute_Im(Solar.R ~ Wind + Temp + Month) 7>%
impute_lm(0Ozone ~ Wind + Temp + Month) %>%
as_tibble()

aq_imp_lm

# A tibble: 153 x 13
Ozone Solar.R Wind Temp Month Day Ozone_NA Solar.R_NA Wind_NA Temp_NA

<dbl> <dbl> <dbl> <int> <int> <int> <fct> <fct> <fct> <fct>

141 190 7.4 67 5 1 INA INA INA INA

2 36 118 8 72 5 2 INA INA INA INA
312 149 12.6 74 5 3 INA INA INA INA

4 18 313 11.5 62 5 4 INA INA INA INA

5 -9.04 138. 14.3 56 5 5 NA NA INA INA

6 28 178. 14.9 66 5 6 !NA NA INA INA

7 23 299 8.6 65 5 7 'NA INA INA INA

8 19 99 13.8 59 5 8 INA INA INA INA

9 8 19 20.1 61 5 9 INA INA INA INA
10 35.2 194 8.6 69 5 10 NA INA INA INA
# ... with 143 more rows, and 3 more variables: Month_NA <fct>, Day_NA <fct>,

# any_missing <chr>

ggplot(aq_imp_lm,
aes(x = Solar.R,
y = Ozone,
colour = any_missing)) +
geom_point ()
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Without the any_missing variable, we could only identify the missings of one variable:
Solar.R_NA or Ozone_NA.

15.3 Evaluating imputations: Evaluating and comparing
imputations

aq_imp_small <- airquality %>%
nabular() %>%
as.data.frame() %>%
impute_lm(Ozone ~ Wind + Temp) %>%
impute_lm(Solar.R ~ Wind + Temp) 7%>%
add_label shadow()

aq_imp_large <- airquality %>%
nabular() %>%
as.data.frame() %>%
impute_lm(Ozone ~ Wind + Temp + Month + Day) %>7%
impute_lm(Solar.R ~ Wind + Temp + Month + Day) %>%
add_label shadow()
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When you build up an imputation model, it is good practice to compare it to an alternative
method. Let’s compare two linear regression imputation models. The first with two variables:
Wind, and Temperature, and the second with four: Wind, Temperature, Month, and Day.

To facilitate comparing models, we put them into the same dataframe, by binding their rows
together using bind_rows from dplyr package.

bound_models <- bind rows(
small = aq_imp_small,
large = aq_imp_large,
.id = "imp_model"
) %%
as_tibble()

To help us identify which data came from which imputation process, we use the .id argument
to add a new column that identifies them. By writing small = aq_imp_small and large
= aq_imp_large, we can then use .id = "imp_model". This creates a dataset of all the
imputations with an extra column, imp_model.

head (bound_models)

# A tibble: 6 x 14
imp_model Ozone Solar.R Wind Temp Month Day Ozone_NA Solar.R_NA Wind_NA

<chr> <dbl> <dbl> <dbl> <int> <int> <int> <fct> <fct> <fct>

1 small 41 190 7.4 67 5 1 INA INA INA
2 small 36 118 8 72 5 2 INA INA INA
3 small 12 149 12.6 74 5 3 INA INA INA
4 small 18 313 11.5 62 5 4 INA INA INA
5 small -11.7 127. 14.3 56 5 5 NA NA INA
6 small 28 160. 14.9 66 5 6 !NA NA INA
# . with 4 more variables: Temp_NA <fct>, Month_NA <fct>, Day_NA <fct>,
# any_missing <chr>

tail (bound_models)

# A tibble: 6 x 14
imp_model Ozone Solar.R Wind Temp Month Day Ozone_NA Solar.R_NA Wind_NA

<chr> <dbl> <dbl> <dbl> <int> <int> <int> <fct> <fct> <fct>
1 large 14 20 16.6 63 9 25 INA 'NA INA
2 large 30 193 6.9 70 9 26 INA INA INA
3 large 26.9 145 13.2 77 9 27 NA INA INA
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4 large 14 191 14.3 75 9 28 I'NA INA INA
5 large 18 131 8 76 9 29 INA 'NA INA
6 large 20 223 11.5 68 9 30 !NA INA INA

# ... with 4 more variables: Temp_NA <fct>, Month_NA <fct>, Day_NA <fct>,

# any_missing <chr>

15.4 Evaluating imputations: exploring many imputations

We can look at the values of Ozone and Solar.R on a scatterplot, colouring by any missings,
and facetting by imputation model used: imp_model.

ggplot (bound_models,
aes(x = Ozone,
y = Solar.R,
colour = any_missing)) +
geom_point() +
facet_wrap(~imp_model)
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We learn there isn’t much difference between either of the linear model methods for imputing
data - they both seem to be within the range of the data, but both models did not impute

three values.
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We can explore only the imputed values against each other by filtering to just “missing”
(imputed) values, then plotting them, colouring by the different imputation model.

bound_models %>%

filter(any_missing == "Missing") %>’
ggplot (aes(x = Ozone,
y = Solar.R,

colour = imp_model)) +
geom_point ()
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We learn that there appears to be some difference in the imputed values, with perhaps the
large imputation model imputing higher ozone levels than the small imputation model. We’ll
go into a bit more detail on comparing between variable4s in the next section.

15.5 Explore imputations in multiple variables and models

To explore the imputations across these different models and variables, we gather the selected
four variables, Ozone, Solar Radiation, any_missing, and imp_model, and then we pivot the
Ozone and Solar.R variables into longer form with pivot_longer ().
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#

© 0 NO O WN -

[EY
O

# ...

bound_models_gather <- bound_models %>%
select (Ozone,
Solar.R,
any_missing,
imp_model) %>%
pivot_longer(cols = c(Ozone, Solar.R),

names_to = "variable",
values_to = "value")

bound_models_gather

A tibble: 61
any_missing
<chr>
Not Missing
Not Missing
Not Missing
Not Missing
Not Missing
Not Missing
Not Missing
Not Missing
Missing
Missing

with 602

This gives us the

#

O Ok WN -

2 x4

imp_model variable value
<chr> <chr> <dbl>
small Ozone 41
small Solar.R 190
small Ozone 36
small Solar.R 118
small Ozone 12
small Solar.R 149
small Ozone 18
small Solar.R 313
small Ozone -11.7
small Solar.R 127.

more rows

columns, any_missing, imp_model, variable, and value:

head(bound_models_gather)

A tibble: 6
any_missing
<chr>

Not Missing
Not Missing
Not Missing
Not Missing
Not Missing
Not Missing

x 4

imp_model variable value
<chr> <chr> <dbl>
small Ozone 41
small Solar.R 190
small Ozone 36
small Solar.R 118
small Ozone 12
small Solar.R 149

160



tail (bound_models_gather)

# A tibble: 6 x 4
any_missing imp_model variable value

<chr> <chr> <chr> <dbl>
1 Not Missing large Ozone 14
2 Not Missing large Solar.R 191
3 Not Missing large Ozone 18
4 Not Missing large Solar.R 131
5 Not Missing large Ozone 20
6 Not Missing large Solar.R 223

15.5.1 Explore imputations in multiple variables and models

We can then plot the data as a boxplot, putting the imputation model on the x axis, value on
the y axis, and facetting the different values for each variable.

ggplot (bound_models_gather,
aes(x = imp_model,
y = value)) +
geom_boxplot() +
facet_wrap(~variable)
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We learn that both models have similar mean and spread, and scale - there isn’t much difference
between the models.

15.6 Explore imputations in multiple variables and models

We can also only look at the imputed values only, by filtering any_missing to look at “Missing”,
and do the same plot.

bound_models_gather %>Y%
filter(any_missing == "Missing") %>%
ggplot(aes(x = imp_model,
y = value)) +
geom_boxplot() +
facet_wrap(~variable)
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We see that the imputed values for the larger model tend to have a slightly higher median
than those imputed with the smaller model. But this is a very small difference.
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16 Assessing inference from imputation

library(naniar)
library(tidyverse)
-- Attaching packages --------——————————————————————————————- tidyverse 1.3.1 --
v ggplot2 3.3.6 v purrr 0.3.4
v tibble 3.1.7 v dplyr 1.0.9
v tidyr 1.2.0 v stringr 1.4.0
v readr 2.1.2 v forcats 0.5.1
—-- Conflicts ————————————————————————m oo tidyverse_conflicts() --

x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()

library(simputation)

Attaching package: 'simputation'
The following object is masked from 'package:naniar':
impute_median

In this chapter we discuss methods for assessing model inference across differently imputed
datasets. Let’s step back, and think about why we are imputing data in the first place. Our
goal in performing imputations is to perform an analysis in a way that the missing values do
not unfairly bias subsequent inference, or predictions that we make.
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16.1 Exploring parameters of one model

[TODO: update from airquality dataset, it is getting a bit tired]

Let’s fit a model to the airquality dataset using a linear model, predicting temperature, using
ozone, solar radiation, wind, month and day.

1m(Temp ~ Ozone + Solar.R + Wind + Month + Day, data = airquality)

Call:
Im(formula = Temp ~ Ozone + Solar.R + Wind + Month + Day, data = airquality)

Coefficients:
(Intercept) Ozone Solar.R Wind Month Day
57.25183 0.16528 0.01082 -0.17433 2.04246 -0.08919

We are going to fit this model using two methods:

1. Complete case analysis, where we remove all rows that contain a missing value
2. Imputing data using the linear model imputation from the last lesson.

Using the complete cases provides a nice baseline for comparison, as this removes all missing
values, so it is sort of like comparing your model to “doing nothing”. Except that it is worse
than doing nothing - since you are removing data! You might be able to imagine a few different
outcomes of this process:

e The outputs are basically the same, in which case, using the data with imputed values
is better from a statistics standpoint, so you may as well use them.

e The imputed data does much better than complete cases, in which case, use the imputed
data.

e The imputed data does worse than complete cases - which which case, you might want
to check your imputed model for errors, or perhaps there are some bias in your data.

16.2 Combining the datasets together

There are three steps to comparing our data.

First, we perform the complete case analysis, using na.omit (), and converting the data into
nabular form.
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#1. Complete cases

aqg_cc <- airquality %>%
na.omit() %>%
nabular() %>%
add_label shadow()

Second, we impute the data according to a linear model

#2. Imputation using the imputed data from the last lesson
aq_imp_lm <- airquality %>%
nabular() %>%
add_label_shadow() %>%
as.data.frame() %>%
impute_lm(0Ozone ~ Temp + Wind + Month + Day) %>7%
impute_lm(Solar.R ~ Temp + Wind + Month + Day) %>%
as_tibble()

Finally, we combine the different datasets together with bind_rows (). Note the extra column,
imp_model, which helps us identify data from the model used.

# 3. Bind the models together

bound_models <- bind_rows(cc = aq_cc,
imp_lm = aq_imp_1m,
.id = "imp_model")

This prepares us for fitting our new models, so we can summarise and compare differences in
the data.

The bound models have a column imp_model, then the columns from airquality, and our
shadow variables and any_missing.

head (bound_models)

# A tibble: 6 x 14
imp_model Ozone Solar.R Wind Temp Month Day Ozone_NA Solar.R_NA Wind_NA

<chr> <dbl> <dbl> <dbl> <int> <int> <int> <fct> <fct> <fct>
1 cc 41 190 7.4 67 5 1 I'NA INA INA
2 cc 36 118 8 72 5 2 INA INA INA
3 cc 12 149 12.6 74 5 3 INA INA INA
4 cc 18 313 11.5 62 5 4 INA INA INA
5 cc 23 299 8.6 65 5 7 'NA INA INA
6 cc 19 99 13.8 59 5 8 INA INA INA
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+*

. with 4 more variables: Temp_NA <fct>, Month_NA <fct>, Day_NA <fct>,
any_missing <chr>

**

tail (bound models)

# A tibble: 6 x 14
imp_model Ozone Solar.R Wind Temp Month Day Ozone_NA Solar.R_NA Wind_NA

<chr> <dbl> <dbl> <dbl> <int> <int> <int> <fct> <fct> <fct>

1 imp_1lm 14 20 16.6 63 9 25 INA INA INA
2 imp_1lm 30 193 6.9 70 9 26 INA INA INA
3 imp_1lm 26.9 145 13.2 7 9 27 NA INA INA
4 imp_lm 14 191 14.3 75 9 28 INA INA INA
5 imp_1m 18 131 8 76 9 29 INA INA INA
6 imp_lm 20 223 11.5 68 9 30 'NA INA INA
# ... with 4 more variables: Temp_NA <fct>, Month_NA <fct>, Day_NA <fct>,
# any_missing <chr>

16.3 Exploring the models

Now that we’ve got our data in the right format, we fit a linear model to each of the datasets.
We use the “many models” approach, covered in detail in the R for data science book by
Hadley Wickham and Garrett Grolemund.

This involves some functions that we haven’t seen before. Let’s unpack what’s happening
below. First we group by the imputation model, then nest the data. This collapses, or nests,
the data down into a neat format where each row is one of our datasets.

bound_models %>%
group_by (imp_model) 7%>%
nest ()

# A tibble: 2 x 2
# Groups: imp_model [2]
imp_model data
<chr> <list>
1 cc <tibble [111 x 13]>
2 imp_lm <tibble [153 x 13]>
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This allows us to create linear models on each row of the data, using mutate, and a special
function, map. This tells the function we are applying to look at the data and then fit the
linear model to each of the datasets in the data column.

bound_models %>%
group_by (imp_model) %>%
nest() %>%
mutate(mod = map(data,
~Im(Temp ~ Ozone + Solar.R + Wind + Day + Month,

data = .)))
# A tibble: 2 x 3
# Groups: imp_model [2]
imp_model data mod
<chr> <list> <list>
1 cc <tibble [111 x 13]> <Im>

2 imp_1m <tibble [153 x 13]> <1lm>

Then we then fit the model and create separate columns for residuals, predictions, and coeffi-

cients, using the tidy function from broom, to provide nicely formatted coefficients from our
linear model.

model_summary <- bound_models %>
group_by (imp_model) %>%
nest() %>%
mutate (mod = map(data,
~1m(Temp ~ Ozone + Solar.R + Wind + Day + Month,
data = .)),
res = map(mod, residuals),
pred = map(mod, predict),
tidy = map(mod, broom::tidy))

model _summary

# A tibble: 2 x 6
# Groups: imp_model [2]

imp_model data mod res pred tidy
<chr> <list> <list> <1list> <list> <list>
1 cc <tibble [111 x 13]> <Im> <dbl [111]> <dbl [111]> <tibble [6 x 5]>

2 imp_1m <tibble [153 x 13]> <1m> <dbl [153]> <dbl [153]> <tibble [6 x 5]>
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Our data, model_summary, has the columns imp_model, and data, and columns with our fitted
linear model (mod), residuals (res), predictions (pred), and tidy coefficients (tidy).

model_summary forms the building block for the next steps in our analysis, where we are going
to look at the coefficients, the residuals, and the predictions.

This is just one way to fit these kinds of models - there are many other ways, and it might not
work for all types of models, but this many models approach can be convenient!

16.4 Exploring coefficients of multiple models

We explore coefficients by selecting the imputation model and the tidy column and unnesting:

model_summary_coefs <- model_summary %>’
select (imp_model,
tidy) %>%
unnest(cols = c(tidy))

model_summary_coefs

# A tibble: 12 x 6
# Groups: imp_model [2]

imp_model term estimate std.error statistic p.value

<chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 cc (Intercept) 57.3 4.50 12.7 5.52e-23
2 cc Ozone 0.165 0.0239 6.92 3.66e-10
3 cc Solar.R 0.0108 0.00699 1.55 1.24e- 1
4 cc Wind -0.174 0.212 -0.821 4.13e- 1
5 cc Day -0.0892 0.0677 -1.32 1.91e- 1
6 cc Month 2.04 0.409 4.99 2.42e- 6
7 imp_lm (Intercept) 54.7 3.59 15.2 5.21e-32
8 imp_lm Ozone 0.196 0.0205 9.53  4.52e-17
9 imp_1lm Solar.R 0.0102 0.00577 1.76  7.97e- 2
10 imp_1m Wind -0.00642 0.172 -0.0374 9.70e- 1
11 imp_Im Day -0.112 0.0538 -2.08 3.92e- 2
12 imp_1lm Month 2.11 0.340 6.21 5.09e- 9

We now see the estimates of the impact of Ozone on temperature. To best understand this we
can plot these estimates for each model like so:
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ggplot (model_summary_coefs,
aes(x = estimate,
y = term,
fill = imp_model)) +
geom_col(position = "dodge")
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Plotting these, we see that the estimates are pretty much the same for both, with the intercept
being slightly lower for the imputed model, and higher for the complete cases. However, we
can probably get a slightly more nuanced view of this by looking at these variables on their
own scale:

ggplot (model_summary_coefs,
aes(x = imp_model,
y = estimate)) +
geom_point() +
facet_wrap(~term, scales = "free_y")
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These look like big differences for all of these - but this is intentional, as we have let the y axis
be freely varying. These values in this case look to be not very different in a meaningful way
for this data, but it is an important step to take for any dataset.

16.5 Exploring residuals of multiple models

Let’s explore the residuals by selecting the imp model and residuals, and then unnesting the
data. We can then create a histogram, using position = "dodge" to put residuals for each
model next to each other.

model_summary %>%
select (imp_model,
res) %>%
unnest(cols = c(res)) %>
ggplot(aes(x = res,
fill = imp_model)) +
geom_histogram(position = "dodge")

“stat_bin() "~ using “bins = 30" . Pick better value with “binwidth-.
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We see that, surprisingly! there isn’t much difference between the two, and the residuals of
the imputed model seem to be more centered around zero.

16.6 Exploring predictions of multiple models

Finally, we can explore the predictions in the data, using a similar pattern.

model_summary %>%
select (imp_model,
pred) %>%
unnest(cols = c(pred)) %>%
ggplot(aes(x = pred,
fill = imp_model)) +
geom_histogram(position = "dodge")

“stat_bin() " using “bins = 30°. Pick better value with “binwidth-.
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Similar to what we saw with the residuals, the predictions are quite similar to complete case,
but with some more extreme values.
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Part VII

Conclusion
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17 End

library(tidyverse)
-- Attaching packages ----——------"————————————————————————— tidyverse 1.3.1 --
v ggplot2 3.3.6 v purrr 0.3.4
v tibble 3.1.7 v dplyr 1.0.9
v tidyr 1.2.0 v stringr 1.4.0
v readr 2.1.2 v forcats 0.5.1
—-- Conflicts ———————————————— - tidyverse_conflicts() --

x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()

library(naniar)

17.0.1 This is only the beginning!

Now as they say, this is only the beginning. This course covered an often overlooked area of
statistics - missing data, and inside the world of missing data, we also covered yet another
area that is often overlooked: How to handle, explore, and visualise missing values.

To continue your journey, and learn more about missing data, you should check out the naniar
package, which contains many useful functions to explore and evaluate your missing data, as
well as numerous vignettes.

The visdat package provides more than just heatmaps of missing data, and is well worth
looking into to learn more about pre exploratory visualisation:

From here, to continue your journey, you might want to explore other workflows for imputing
your missing data.

There are many ways to decide how to impute data. We didn’t have time for it in the course,
but multiple imputation is another great area of research - to learn more about multiple
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imputation, I highly recommend Stefan van Buuren’s package, mice, and his book, Flexible
Imputation of Missing Data.

naniar.njtierney.com visdat.njtierney.com mice R package flexible imputation of missing data
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